Table 6.2-2: Redundancy Equations for Calculating Reliability

Configuration	Reliability, R(t)=
Active Redundancy "n" fully energized identical parallel units.	
1 of 2 Must Be Working	2e ^{-λt} - e ^{-2λt}
1 of 3 Must Be Working	$3e^{-\lambda t}$ - $3e^{-2\lambda t}$ + $e^{-3\lambda t}$
1 of 4 Must Be Working	$4e^{-\lambda t} - 6e^{-2\lambda t} + 4e^{-3\lambda t} - e^{-4\lambda t}$
1 of n Must Be Working	$\sum_{k=1}^{n} (-1)^{k+1} \frac{n!}{k! (n-k)!} e^{-k\lambda t}$
2 of 3 Must Be Working	3e ^{-2λt} - 2e ^{-3λt}
3 of 4 Must Be Working	4e ^{-3λt} - 3e ^{-4λt}
n-1 of n Must Be Working	$ne^{-(n-1)\lambda t}$ - (n-1) $e^{-n\lambda t}$
2 of 4 Must Be Working	$3e^{-4\lambda t}$ - $8e^{-3\lambda t}$ + $6e^{-2\lambda t}$
3 of 5 Must Be Working	6e ^{-5λt} - 15e ^{-4λt} + 10e ^{-3λt}
n-2 of n Must Be Working	$\frac{n!}{2 (n-2)!} e^{-(n-2) \lambda t} + (2n-n^2) e^{-(n-1)\lambda t} + \frac{(n-1)!}{2 (n-3)!} e^{-n\lambda t}$
m of n Must Be Working	$\sum_{k=m}^{n} \frac{n!}{k! (n-k)!} \left(e^{-\lambda t}\right)^{k} \left(1 - e^{-\lambda t}\right)^{(n-k)}$
Standby Redundancy: 1. All units are identical; 2. Standby units are not energized and assumed to have a failure rate of zero; 3. The failure rate of the switching device is assumed to be zero.	
1 of 2 Must Be Working	$e^{-\lambda t} + \lambda t e^{-\lambda t}$
1 of 3 Must Be Working	$e^{-\lambda t} + \lambda t e^{-\lambda t} + .5(\lambda t)^2 e^{-\lambda t}$
1 of n Must Be Working	$\sum_{r=0}^{n-1} e^{-\lambda t} \frac{(\lambda t)^r}{r!}$
m of n Must Be Working	$e^{-m\lambda t} \sum_{k=0}^{n-m} \frac{(m\lambda t)^k}{k!}$