A Statistical Distribution Function of
Wide Applicability

By WALODDI WEIBULL,! STOCKHOLM, SWEDEN

This paper discusses the applicability of statistics to a
wide field of problems. Examples of simple and complex
distributions are given.

F a variable X is attributed to the individuals of a population,
Ithe distribution function (df) of X, denoted F(zx), may be

defined as the number of all individuals having an X < «z,
divided by the total number of individuals. This function also
gives the probability P of choosing at random an individual
having a value of X equal to or less than z, and thus we have

PX<z)=F(z)....c0ccco ... [1]
Any distribution function may be written in the form
Fla)y =1—e ¢@ ... ........ 2]

This seems to be a complication, but the advantage of this formal
transformation depends on the relationship

(1 — P)r = ¢~ (@

The merits of this formula will be demonstrated on a simple
problem.

Assume that we have a chain consisting of several links. If we
have found, by testing, the probability of failure P at any load x
applied to a “single” link, and if we want to find the probability
of failure P, of a chain consisting of » links, we have to base our
deductions upon the proposition that the chain as a whole has
failed, if any one of its parts has failed. Accordingly, the proba-~
bility of nonfailure of the chain, (1 — P,), is equal to the
probability of the simultaneous nonfailure of all the links. Thus
we have (1—P,) = (1— P)*. If then the df of a single link takes
the form Equation [2], we obtain

P, =

Equation [4] gives the appropriate mathematical expression
for the principle of the weakest link in the chain, or, more gen-
erally, for the size effect on failures in solids.

The same method of reasoning may be applied to the large
group of problems, where the occurrence of an event in any part
of an object may be said to have oocurred in the object as a whole,
e.g., the phenomena of yield limits, statical or dynamical strengths,
electrical insulation breakdowns, life of electric bulbs, or even
death of man, as the probability of surviving depends on the
probability of not having died from many different causes.

Now we have to specify the function ¢(z). The only neces-
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sary general condition this function has to satisfy is to be a posi-
tive, nondecreasing function, vanishing at a value z,, which is
not of necessity equal to zero.

The most simple function satisfying this condition is

(z —z,)™
and thus we put

F@)=1—e ™ oo 5]

The only merit of this df is tc be found in the fact that it is the
simplest mathematical expression of the appropriate form, Equa-
tion [2], which satisfies the necessary general conditions. Experi-
ence has shown that, in many cases, it fits the observations better
than other known distribution functions.

The objection has been stated that this distribution function
has no theoretical basis. But in so far as the author understands,
there are—with very few exceptions—the same objections
against all other df, applied to real populations from natural or
biological fields, at least in so far as the theoretical basis has any-
thing to do with the population in question. Furthermore, it is
utterly hopeless to expect a theoretical basis for distribution
functions of random variables such as strength properties of ma-
terials or of machine parts or particle sizes, the ‘“particles’” being
fly ash, Cyrtoideae, or even adult males, born in the British Isles.

It is believed that in such cases the only practicable way of
progressing is to choose a simple function, test it empirically, and
stick to it as long as none better has been found. In accordance
with this program the df Equation [5], has been applied not only
to populations, for which it was originally intended, but also to
populations from widely different fields, and, in many cases, with
quite satisfactory results. The author has never been of the
opinion that this function is always valid. On the contrary, he
very much doubts the sense of speaking of the ‘“‘correct’” distri-
bution function, just as there is no meaning in asking for the
correct strength values of an SAE steel, depending as it does, not
only on the material itself, but also upon the manufacturer and
many other factors. In most cases, it is hoped that these factors
will influence only the parameters. However, accidentally they
may even affect the function itself.

The purpose of this paper has been to illustrate with a few
examples the experience that the df, Equation [5], may some-
times render good service.

The number of examples has, by space, been limited to the
following:

Yield strength of a Bofors steel
Size distribution of fly ash
Fiber strength of Indian cotton
Length of Cyrtoideae

Fatigue life of a St-37 steel

In the Appendix:

[ I e

6 Statures for adult males, born in the British Isles
7 Breadth of beans of Phaseolus Vulgaris
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The correctness of fit has been checked by applying the chi-
square method

Of those populations, Nos. 1-3 are distributed in good agree-
ment with the df Equation [5], whereas the four remaining popu-
lations have to be split up into two components, before such an
agreement is obtained. The first type will be called a “simple”
and the second type a ‘“complex’’ distribution.

The fundamental question now arises, whether this splitting-
up is a purely formal operation, or whether it might unveil some
hidden real causes. It may be said that any distribution may be
represented by a sum of a sufficiently great number of simple
distributions, just as any periodical function may be developed in
a Fourier series. However, if the number of the components be
small and the number of observations sufficiently large, the like-
lihood of real causes seems to increase. In any case, it is very
easy to produce real complex distributions by syntheses.

It seems obvious that the components of examples 4 and 5 are
due to real causes. In examples 6 and 7 it is impossible to
decide whether the division is a formal one or a real one, but the
fact itself may be a valuable stimulus to a closer examination of
the observed material.

The specific data for the examples follow.

YieELD STRENGTH OF A Borors STEEL

The observed values are obtained as routine tests of a Bofors
steel, the quality of which was chosen at random for purposes of
demonstration only. Fig. 1 gives the curve and Table 1 the

TABLE 1 YIELD STRENGTH OF A BOFORS STEEL
(z = yield strength in 1.275 kg/mm?)

Expected Observed Normal
values values distribution
x n n n
1 32 10 10 8
2 33 36 33 28
3 34 84 81 71
4 35 150 161 141
5 36 224 224 225
6 37 291 289 301
7 38 340 336 351
8 39 369 369 376
9 40 383 383 386
10 42 389 389 388
T T %
| ool Yield Strength of a 29
Bofors Steel /°a/
N-389 P
F.8-1 a3
5
a
Eaaiie i Z
) xy= 38.57 kg /mm?
ro-1 ) / e X 7.74 kg/ mm?
n / m= 29342
[6-2 2 X% 540;i=6
P = 049
F2-2
1 | log (x-xy) ’
-3 4 .5 6 ki .9 1,0

F1c. 1 YIELD STRENGTH OF A BOFORS STEEL

values, observed and calculated. The parameters are z, = 38.57
kg/mm?, z, = 7.74 kg/mm?, m = 2.934. Without pooling, the
degrees of freedom (d of f) are 9 —3 = 6. Then x2? = 5.40 gives
P = 0.49. The agreement is thus very satisfactory.

As a comparison, the values expected on the hypothesis of a
normal distribution have been computed and are given in the
last column of Table 1. If the classes 9-10 are pooled, the
dof fare 8 — 2 = 6. Then a x? = 18.17 gives a P = 0.008,
which is not satisfactory at all.
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Si1ze DisTRIBUTION OF FLY AsH

The observed values are taken from J. M. Dalla Valle’s work.?
Fig. 2 gives the curve and Table 2 the values. The parameters
arez, = 30y, xo = 128 u, m = 2.288. Without pooling, the d of f
are 12—3 = 9. Then x? = 8.44 givesa P = 0.49. If the classes
2-3 and 13-14 are pooled, the d of f are 7 and x? = 8.44 gives a
P = 0.29.

TABLE 2 SIZE DISTRIBUTION OF FLY ASH
(z = particle diameter in 20 microns)

.Expected Observed
values values
x n n
2 3 3
3 14 14
4 34 34
5 62 56
6 92 85
7 122 126
8 150 150
9 172 175
10 188 188
11 199 197
12 205 202
13 209 208
14 211 211
L4-0 - . T —
Size Distribution -
12
Lo-o— of Fly-ash il
N=211 / 9
8
6-1 7
/l{'
-.2-1—__"‘: /s
g Xy = 30 4
= 4
r8-2-g A X0 =128
/ m =2.2883
r4-2 A2 x=8.44,i=7
P =029
L.0-2 A
f{ log (x-xy)
) 5 1 11

F1e. 2 Size DistriBuTiON OF FLY ASH

FiBER STRENGTH OF InpIAN CoTTON

The observed values are taken from R. S. Koshal and A. J.
Turner.® Fig. 3 gives the curve, and Table 3 the values. The
parameters are z, = 0.59 gram, zo = 3.73 grams, m = 1.456.
If the classes 14 to 16 are pooled, the d of f are 13 —3 = 10. Then

" x? = 11.45 givesa P = 0.35.

The authors® have pointed out that the most striking feature
about the frequency curve is its asymmetry, showing a well-
marked predominance of weak fibers. It was found—they say—
that the observation curve would be well fitted by a theoretical
curve of Pearson’s Type 1, having the following equation

z )o,snm z 13.631284
= 5993 |1 _—
v < RRTXCE, <1 29.1947>

In this equation y represents the frequency of any strength z,
expressed in grams.

The values computed from this not very handy equation are
shown in the last column of Table 3. Thed of fare 13 —5 = 8
(as there are 5 parameters). Then x? = 14.43 givesa P = 0.07.

2 “Micromeritics,”” by J. M. Dalla Valle, Pitman Publishing
Corporation, New York, N. Y., 1948, p. 57, Fig. 2.

3 “Studies in the Sampling of Cotton for the Determination of
Fiber Properties,” by R. S. Koshal and A. J. Turner, Journal of the
Textile Institute Transactions, vol. 21, 1930, pp. 325-370.
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TABLE 3 FIBER STRENGTH OF INDIAN COTTON

(z = tensile strength in grams)

Expected Observed Pearson
values values Type 1
z n n n
1 118 177 127
2 646 667 659
3 1232 1219 1255
4 1751 1729 1777
5 2161 2153 2184
6 2461 2465 2480
7 2667 2664 2683
8 2802 2813 2816
9 2886 2887 2899
10 2937 2933 2949
11 2966 2962 2978
12 2082 2985 2994
13 2991 2991 3003
14 2996 2995 3007
15 2999 2999 3009
16 3000 3000 3010
I L
r.4-0 12347
Fiber Strength of &o'
+.0-0 Indian Cotton -7:‘,°é
N=3000 J/ﬁg 6
Ls-| — —I'f o
g:- j /03/ xy = 0.59gr
F2-1— §| xg = 3.73gr
- // m = 1.4561
lg-2 x2=11.45;i=10
//, P =035
_.:2/
i tog (x-x ‘I
31 9 3 s Jog 1
Fic. 3 FiBer STRENGTH oF INpIAN CoTTON
TABLE 4 LENGTH OF CYRTOIDEAE
(x = length in microns)
Observed
———Expected values——— values
z ni ny N4 2 nis 2
1 10 1 .. 1 0
2 20 5 .. 5 5
3 30 13 .. 13 12
4 40 23 .. 23 24
5 50 35 .. 35 38
6 60 47 .. 47 45
7 70 58 .. 58 58
8 80 67 .. 67 69
9 90 74 .. 74 70
10 100 79 .. 79 80
11 110 82 .. 82 82
12 120 85 .. 85 84
13 130 86 .. 86 86
14 140 86 4 90 90
15 150 86 7 93 93
16 160 86 9 95 95
17 170 86 11 97 97
18 180 86 12 98 98
19 190 86 13 99 99
20 200 86 14 100 100

T ] x
! |
2-0— Length of Cyrtoidea __‘r K{{{'/a angi
Sample No.41.247 | 0" As
8-1— N=100 13
4-1—] mﬂ—~ﬁﬁ»—;s
—‘.‘_ L
>
g ‘\"/;4/ ponent 1
Ol /00 xgs 3754 T
2 TS - 2,097
BN A mz 2.
H6-2 /\{:M X% 3s9 |
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272 ]
log (x-xy) | | |
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Fic. 4 LeNcTH oF CYRTOIDEAE
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In spite of the greater number of parameters, the fit of this dis-
tribution function is not as close as that of the first one.

LeNGTH OF CYRTOIDEAE

This is the first example of a complex distribution. The ob-
served values have been obtained from investigations by Dr.
Gustaf Arrhenius, on submarine cores from the Swedish Deep-Sea
Expedition With Albatross. The measurements were made by
Dr. C. Jungk, taking samples from each 10 cm of the core,
corresponding to an age interval of about 100,000 years. Some
fifty populations have been analyzed statistically. About 20 per
cent of the populations showed a simple distribution, as exempli-
fied in a previous paper.* The remaining samples showed a two-
component distribution.

Fig. 4 gives the curves and Table 4 the values of one of the
complex populations. The undivided sample gives the curve
marked N; + N, It is easy to see that the distribution is a
complex one, and that it is necessary to split up the population in
two parts. By trial it was found that 86 of the individuals be-
longed to component No. 1, and 14 to component No. 2.

The parameters are: Component No. 1: z, = 3.75 u, zo = 63.2
u, m = 2.097. Pooling the classes 2-3, 9-10, and 11-13 gives
x? = 3.59. Thedoffare7—3 =4, and P = 0.47.

Component No. 2: z, = 122.0 u, 20 = 124.1 u, m = 1.479.
The number of individuals is too small for the x?2-test.

Faricue LaFE oF AN S1-37 STEEL

The observed values are taken from Miiller-Stock.5 The fre-
quency curve in Fig. 5% gives no impression of a complex dis-
tribution, which, on the other hand, may easily be seen when

4 “A Statistical Analysis of the Size of Cyrtoideae in Albatross
Cores From the East Pacific Ocean,” by W. Weibull, Nature, vol.
164, 1949, p. 1047.

5 “Der Einfluss dauernd und unterbrochen wirkender, schwingender
uberbeanspruchung auf die Entwicklung des Dauerbruchs,” by H.
Mauller-Stock, Mittetlungen Kohle- und Eisenforschung, (March, 1938),
by measurements from his Fig. 13; reproduced in Fig. 5 of this paper.

TABLE 5 FATIGUE LIFE OF ST-37
(Rotating—beam test at =32 kg/mm?2)

Observed
N ———Expected values— values
103 m n LW nl42
1 17.5 4.6 . 4.6 4.6
2 22.5 47 .4 . 47 .4 47 .4
3 27.5 125.1 . 125.1 125.1
4 32.5 161.2 8.1 169.3 169.2
5 37.5 164.9 28.0 192.9 192.7
6 42.5 165.0 41.9 206.9 207.3
7 47.5 165.0 51.0 216.0 215.9
8 52.5 165.0 57.0 222.2 222.2
9 57.5 165.0 61.0 226.0 225.9
10 62.5 165.0 63.7 228.7 228.7
11 67.5 165.0 65.6 230.6 230.5
12 72.5 165.0 66.9 231.9 231.9
13 77.5 165.0 67.9 232.9 232.9
14 82.5 165.0 68.6 233.6 233.5
15 87.5 165.0 69.1 234.1 233.9
16 92.5 165.0 70.0 235.0 235.0
100 I T 7
80 T
A |
60
40 \
20
j/ :
0 0010 0020 0030 0040 0050 G060 0070 Q080 0090 0,100 x105

Fic. 5 FrequenNcy CURVE oF Faricue Lire orF S1-37 STEEL
(Number of specimens versus number of stress cycles.)
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using the plottings in Fig. 6. The parameters are: Component
No. 1: z, = 4.032, m = 5.956; Component No. 2: z, = 4.484,
m = 1.215. Table 5 shows the close agreement between the
observed and the calculated values.

] .
. . 2 + ,«oﬂ"’a}
L.o-0 Fatigue Life of 5t.37 n“/\L}yg J,ﬂj
g
N= 23§ /1/
©
L s-1 et I 3
5 .70 ¥
/ Wy Component 1
- . N 2 xy® 4.032 , Ny=10800
..! ' Rk m =5.956
o ~
J
)
4 @ ’ Component 2
s-2 = P s
g R4 }{,’f Xy~ 4.484 , Ny=30500
.p("‘ Q,‘ m = 1215
--0-2 / <t / 1
log (x-xy)
ot 21 el &l 81

Fic. 6 Faricue LiFe oF S1-37 STEEL

It may be pointed out that the frequency curve in Fig. 5 seems
to be the result of a smoothing operation on the cumulative
frequency curve. Accordingly, the sampling errors of the ob-
served values in Table 5 have been eliminated almost entirely
(without affecting the function), which explains the really too
good representation of the observed values.

The real causes of this splitting up in two components may be
found by examining the frequency curve of the yield strength of
the same material, Fig. 7. It is easy to see that the material,
probably not being killed, is composed of two different kinds.
If we suppose that all the specimens with a yield strength of less
than 25 kg/mm?2 belong to Component No. 1, we obtain 14 speci-
mens out of 20, making 70 per cent. Exactly the same propor-
tion has been found by the statistical analysis, as 165/235 = 70
per cent.

The reason why this partition is so easily seen in Fig. 7 and
not at all in Fig. 5, depends, of course, upon the much larger
scatter in fatigue life than in yield strength.

Appendix

The foregoing statistical methods have been applied to many
problems outside the field of applied mechanics. It may perhaps
be of interest to have examples of this kind, and for this reason,
the following two are given with the tables only:

STATURES FOR ADULT MALES BorN IN THE BrITiSH ISLES

The observed values are taken from Yule and Kendall.t
This distribution is classified by the authors as being approxi-
mately of the symmetrical type, and there is no mention of its
being composed of two parts.

By trial it was found that the population had to be split up
into two parts: N, = 6200 and N, = 2385. The parameters are
as follows:

Component No. 1: z, = 50.0 in., 20 = 16.2 in.,, m = 9.6865.
If the classes 1-2 and 14-15 are pooled, we get x* = 11.80.
As we have 7 parameters altogether, (one of them is the partition
of the population), we take 3'/, to each of the components. The
d of f are then 12 — 3'/, = 8!/,, which gives a P = 0.20.

Component No. 2: z, = 67.4 in., zo0 = 2.3 in., m = 1.4662.

6 “An Introduction to the Theory of Statistics,” by G. U. Yule
and M. G. Kendall, eleventh edition, J. B. Lippincott Company,
Philadelphia, Pa., 1937, pp. 94 and 111.
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TABLE6 STATURESFOR AD?SLL'II‘EgIALES BORN IN THE BRITISH

(z = height in inches)

Observed

Expected values — values
z n na N1y 2 ni+2
57 2 2 2
58 6 6 6
59 20 20 20
60 56 56 61
61 143 143 144
62 333 333 313
63 702 702 707
64 1350 1350 1376
65 2351 2351 2366
66 3641 3641 3589
67 4917 4917 4918
68 5787 339 6126 6148
69 6134 1079 7213 7211
70 6197 1671 7868 7857
71 6200 2039 8239 8249
72 6200 2233 8433 8451
73 6200 2324 8524 8530
74 6200 2363 8563 8562
75 6200 2378 8578 8578
76 6200 2383 8583 8583
77 6200 2385 8585 8585

TABLE 7 PHASEOLUS VULGARIS
(Breadth of beans = 0.25 z + 6.70 mm)
Observed

—Expected values values

z n n2 Ny 2 i+ 2

1 32 32 32

2 130 130 135
3 400 400 374
4 1011 1011 998
5 2145 2145 2185
6 3832 3832 3835
7 5718 5718 5718
8 7140 486 7626 7648
9 7761 1525 9286 9286
10 7890 2510 10400 10416
11 7900 3229 11129 11153
12 7900 3671 11571 11580
13 7900 3908 11808 11801
14 7900 4022 11922 11911
15 7900 4071 11971 11968
16 7900 4091 11991 11992
17 7900 4098 11998 11998
18 7900 4100 12000 12000

\
\
7 \\ \
' o

g2 23 24 25 26 27 28 29

Fic. 7 FREQUENCY CURVE OF YIELD STRENGTH OF ST-37 STEEL
(Number of specimens versus yield strength in kg/mm".)

If the classes 20-21 are pooled, x2 = 5.11. The d of f are 8 —

3!/, = 41/,, which gives a P = 0.35.
BrEADTH OF BEANS OF PHASEOLUS VULGARIS

This is a classical example, quoted from Charlier’ to exemplify
the expansion in Edgeworth’s series.

If the population is divided into two parts, N, = 7900 and N.
= 4100, each of them may be very well fitted to a simple dis-
tribution function with the following parameters:

Component No. 1: z, = —3.0 (= 5.95 mm), m = 6.2805.
Without pooling we have the x? = 7.70, and the d of f 10 — 3!/,
= 6/, givinga P = 0.29.

Component No. 2: z, = +7.2 (= 8.50 mm), m =

7 “Die Grundlagen der Mathematischen Statistik,” by C. V. L.
Charlier, second edition, 1920, p. 73, quoted by Harald Cramér in
his book:*“Mathematical Methods of Statistics,”” Princeton Univer-
sity Press, Princeton, N. J., 1945, p. 440.

1.6098.
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If the classes 17-18 are pooled, the value of X! = 4.50, and the
dof f 9 — 3t/, = 5!/ givea P = 0.56.

It may be of interest to compare this result with those of
Charlier and Cramér.

Charlier says that, at the first look, the agreement with the
normal distribution seems very satisfactory, but that a closer
examination shows a small negative skewness and a small posi-
tive kurtosis.

Cramér has calculated the values of x? on the hypotheses of

297

normal distribution and asymptotic expansions from it. The
result was as follows:

Normal distribution x* = 196.5d of f 13 P < 0.001
First approximation x? = 343doff 12 P < 0.001
Second approximation x? = 14.9dof f11 P = 0.19

The agreement is satisfactory in the third case only, requiring
four terms of the series. This operation is certainly of a purely
formal character.

Wallodi Weibull published “A Statistical Distribution Function of Wide Applicability”
in the ASME Journal of Applied Mechanics, Transactions of the American Society
Of Mechanical Engineers, September 1951, pages 293-297 as described above.

Discussion of his paper was reported in the ASME Journal of Applied Mechanics,
Transactions of the American Society Of Mechanical Engineers, June 1952, pages 233-
234 as described on the following pages.




DISCUSSION

A Statistical Distribution Function
of Wide Applicability’

T. C. Tsu.* The author should be congratulated for having de-
vised a distribution function of truly wide applicability, as evi-
denced by the seven examples presented in his paper.

Since the writer is currently concerned with the problems of
particle-size distribution in aerosols, he is interested in the pos-
sible utilization of the author’s method to reduce the necessary
amount of experimental work. In this connection he would like
to ask the following questions.

1 In applying the author’s distribution function it is necessary
to determine the parameters z,, x;, and m. If the distribution
function is a true representation of the observed data, then any
three sets of the values of P and z would be sufficient to evaluate
these three parameters. In the author’s examples he did not
specify how his paramecters were obtained. Would he ecare to
discuss this point briefly?

2 When the function iz applied to an unknown distribution,
how many observed data are necessary to yield the parameters
reliably? Considerable practical value would be added to the
suthor’s functiorn if its application could result in a saving of ex-
perimental work.

3 The relations shown in Figs. 1, 2, and 3 in the paper, appear
to represent the equation

T—TIu\™
=1—e 4( )

rather than
_ (z—zu)m

P=1—e 2

Could that be & misprint? The values for log (x — zu) in Fig. 2 do
not correspond to the given values of x and z. in the second ex-
ample (size distribution of fly ash), the discrepancy being appre-
ciable when z is small. Could there be some numerical errors?
If so, would the author kindly show 2 corrected figure?

R. A. MugeLE.? The author’s treatment is definitely a con-

3 “Extended Limit Design Criteria for Continuous Media,” by D.
C. Drucker, W. Prager, and H. J. Greenberg, Quarterly of Applied
Mathematics, vol. 9, no. 4, January, 1952, pp. 381-389.

! By Waloddi Weibull, published in the September, 1951, issue of
;g; JOURNAL oF APrLiED MEecranics, Trans. ASME, vol. 73, pp.

’Aaaocu.t.e Professor of Engineering Research, The Pennsylvania

College, State College, Pa. Mem. ASME.
* Oakland. Calif.
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tribution to the literature on distribution functions. The range of
fields treated in his examples is also impressive.

However, the reason for introducing the minimum value z,
and ignoring the maximum z,, is not entirely clear. Probably
it relates to the original applications, which may have been the
Cystoidea or the yield strengths and fatigue-life data of steels.

Now, for such a case as Fig. 2 of the paper, one would expect
the maximum particie to be more tangible, and also more signifi-
cant practically, than the minimum.

Incorporation of both a maximum and a minimum value of x
will bring Equation [5] into the form

Fa)y=1—e ' =)

which will again reduce to Equation |5] as z,, becames infinite,
and to the Rosin-Rammler type of equation® as r,, vanishes.

Of course one may start with any distribution function where
the argument has infinite range, and convert it to one where the
range is finite. This has been illustrated in the case of the log-
normal distribution by Van Uven® and more recently by Mugele
and Evans.® The latter reference also gives a critical review of the
Rosin-Rammler and other distribution functions.

A word of warning also should be added in regard to the ex-
amples in the paper: They contain some arithmetical and dimen-
sional errors. However, when these are corrected, the examples
illustrate excellently the general statements of the text.

F. A. McCuintock.” The distribution function suggested by
the author is attractive because of its simplicity, the ease with
which it can be applied to studying the size effect, and its implica-
tion of a lower limit to a distribution. In order to apply the dis-
tribution impartially, bowever, some systematic means of Atting
it to experimental data should be used. For & simple distribution
the following procedure appears useful.

The parameters, z,, z,, and m can be chosen so that the first
three moments of the distribution function coincide with those of -
the data. The nth moment of the theoretical distribution is
first caleulated from the camulative distribution

R

Differentiation gives the frequency distribution
) e

f L x— :v:.)"" i (x — 1,
dr .r, = -p Z.

The nth moment about z, is

i )
5 i

exp i

xﬂ

On changing the variable of integration to

(7‘;{9)" _—
7, el

4 “Feinheit und Btruktur des Kohlenstaubs,” by P. Rosin and E.
Rammler, Zeitschrift dee Vereines deutscher Ingenieure, vol. 71, 1927,
pp. 1-7.

#¢ Skew Frequency Curves,” by M.J. Van Uven, Proc. Kon. Akad.
v. Wetens, vol. 19, 1917, p. 670.

¢ “Droplet Size Distribution in Sprays,” by R. A. Mugele and H. D.
Evans, Industrial and Engineering Chemistry, vol. 43, 1951, pp. 1317-
1324.

7 Assistant Professor of Mechanical Engi ing, M 2,
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this becomes

f 7/ exp (— n)dn
This integral can be expressed in terms of the Gamma function
w2 =z, 1 +n/m). L 5]
The second and third moments about the mean are
pz = 22 [T(1 +2/m) —T%1 + 1/m)]

and p; = 2,°(T(1 + 3/m)— 311 + 2/m)['(1 + 1/m)
Lol (1 4 1/m)]... ... 6]

From these a measure of the skewness can be obtained

Since ay is a function of » only, the value of  can be chosen so
that the values of o3 for the theoretical distribution and the ex-
perimental data coincide. Then since the second moment about
the mean, that is, the square of the standard deviation, of the
experimental data is known, the relation

w/x,? =T + 2/m)—T21 + I/m)........ {81
can be solved for z,.  Finally, the relation
m'fe, = (@—z)/, =T(1+1/m).......... 9]

ean be solved for z,, since the mean of the experimental data is
known. Plots of the quantities o, pe/z,% and p'/z, are given
in Figs. 1 and 2 of this discussion.
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The writer would like to ask what procedure, preferably system-
atie, should be followed in the case of a “‘complex’ distribution.
An extension of the foregoing procedure looks impractical, and
vet the writer would like to try applying the distribution in other
cases. For example, it would be interesting to see whether the
other data on the ST-37 steel reported by Miiller-Stock would re-
sult in the same division of the population as found from Figs, 6
and 7 of the paper.
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AvTHoR’s CLOSURE

The author appreciates the comments made by the discussers,
The proposal of Professor Tsu to take any three sets of the values
P and z is quite correct but does not use the data efficiently.
This method may be improved by taking the set from a smoothed
curve. Up to the past year the author’s usual method has been
to plot the data as shown in the paper and to choose the value z,
to give the best straight line. In this way it is easy to decide if
the distribution is simple or complex, but the procedure is not
entirely free of subjectiveness.

About a year ago the author decided that it would be better to
start by standardizing the variable z, i.e, by putting z = (x —
r)/o, where 7 is the mean and ¢ the standard deviation and elimi-
nating two of the parameters, for instance, r, and ry. The dis-
tribution function then takes the form

P =1—expl — [:V72a) — 7¥a) + w(a)]l/=}

where o = 1/m.

A curve paper for different values of o, also including the stand-
ardized Gaussian distribution, may be prepared. By plotting
the points (P, z) on this paper, it is easy to decide whether the dis-
tribution is simple or complex and to estimate, with a good ap-
proximation, the value of .

As to the third question, the parentheses are an awkward mis-
priet. The values for log (z — z,) in Fig. 2 do not correspond to
the given value z,=1.5 X 20u but to z, =120 . It should be
mentioned that the z-values are mid-point values and should
correctly have been increased by 1/;, Thus the value x, = 30 pis
the correct one.

The introduction of a maximum value z,, proposed by Mr. Mu-
gele is a valuable extension of the function. It was not found
necessary to introduce this new parameter in the field of strength
of materials, probably because the theoretical strength may be
perha.ps a hundred times higher than the technical strength But
in other ficlds conditions may be quite different.

The method proposed by Professor MeClintock to use the first
three moments is quite good if the distribution is simple and the
population not too small. The author has been aware of this
possibility of computing the parametersand has mentioned it with
some different notation for the gamma function) in an earlier
paper.® Actually, however, he has never applied this method.
but admits that it may sometimes have its advantages.

As to the question of a systematic procedure when the distri-
bution is complex, the author is sorry to admit that so far he has
found no better method than to cut and try. This is, of course,
not very satisfactory, but a simple electronic computing machine,
recently completed, facilitates the otherwise tedious computa-
tions.

8 *The Phenomenon of Rupture in Solids,” by Waloddi Weibull-
IVA Handling, No. 153, p. 23.
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