APPENDIX A: PARTS COUNT RELIABILITY PREDICTION

Parts Count Reliability Prediction - This prediction method is applicable during bid proposal and early design phases when insufficient information is available to use the part stress analysis models shown in the main body of this Handbook. The information needed to apply the method is (1) generic part types (including complexity for microcircuits) and quantities, (2) part quality levels, and (3) equipment environment. The equipment failure rate is obtained by looking up a generic failure rate in one of the following tables, multiplying it by a quality factor, and then summing it with failure rates obtained for other components in the equipment. The general mathematical expression for equipment failure rate with this method is:

 $\lambda_{\text{EQUIP}} = \sum_{i=1}^{i=n} N_i (\lambda_{ij} \pi_{ij})_i$ Equation 1

for a given equipment environment where:

λEQUIP	=	Total equipment failure rate (Failures/10 ⁶ Hours)
λg	z	Generic failure rate for the i th generic part (Failures/10 ⁶ Hours)
^π Q	=	Quality factor for the i th generic part
Ni	=	Quantity of i th generic part
n	-	Number of different generic part categories in the equipment

Equation 1 applies if the entire equipment is being used in one environment. If the equipment comprises several units operating in different environments (such as avionics systems with units in airborne inhabited (A_1) and uninhabited (A_U) environments), then Equation 1 should be applied to the portions of the equipment in each environment. These "environment-equipment" failure rates should be added to determine total equipment failure rate. Environmental symbols are defined in Section 3.

The quality factors to be used with each part type are shown with the applicable λ_g tables and are not necessarily the same values that are used in the Part Stress Analysis. Microcircuits have an additional multiplying factor, π_L , which accounts for the maturity of the manufacturing process. For devices in production two years or more, no modification is needed. For those in production less than two years, λ_g should be multiplied by the appropriate π_L factor (See page A-4).

It should be noted that no generic failure rates are shown for hybrid microcircuits. Each hybrid is a fairly unique device. Since none of these devices have been standardized, their complexity cannot be determined from their name or function. Identically or similarly named hybrids can have a wide range of complexity that thwarts categorization for purposes of this prediction method. If hybrids are anticipated for a design, their use and construction should be thoroughly investigated on an individual basis with application of the prediction model in Section 5.

The failure rates shown in this Appendix were calculated by assigning model default values to the failure rate models of Section 5 through 23. The specific default values used for the model parameters are shown with the λ_g Tables for microcircuits. Default parameters for all other part classes are summarized in the tables starting on Page A-12. For parts with characteristics which differ significantly from the assumed defaults, or parts used in large quantities, the underlying models in the main body of this Handbook can be used.

APPENDIX A: PARTS COUNT

	Gener Conference Based on El	c Fallure Rate Shovrn, Sold	s, λa ar or ă	allures/1 att Seal	DIPart	rie) for W GI Ae (No	licrocircu . Pins a	ite. Se showi	e Page 1 Below	A-4 for), ×L =	x Q Va 1 (Devi	lues ce in Pr	oduction	~ 2 Yr.		
Section	Part Type	Environ. → T, (°C) →	GB GB	GF B0	G S S	s os	NU 65	AIC 75	AlF 75	AUC 90	AUF	ARW 75	50 50	MF 65	ML 75	ی ت
5 -	Bipolar Tachnology GateA.ogic Arrays, Digital (Ea = .4)		Arno Arno	510	40	024	035	025	030	032	049	.047	0036	030	690)	1.2
	1 - 100 Gates 101 - 1000 Gates	(24 Pin DIP)	0900	020	800	100.	055	600.	048	.051	-017 1	4.0. 13	0060	046	- 6	- C
	1001 to 3000 Gates	(40 Pin DIP) 128 Pin PGA)	033	12	.22	22	50	53	58	00	94 .	44	.033	.28 41	.65 59	2 2
	10,000 to 30,000 Gates	180 Pin PGA)	.052 .075	17	8.4	6. 6 .	.48 .63	9 7 97	56	6 19	88	6.88	075	53	1.2	51
5 1	30,000 to 50,000 Gates		2005	104	600	TEO.	.049	.057	.062	12	.13	076	0095	044	.096	
	1 - 100 Transistors		.017	10	065	054	078	2	=:	.22	7 , 7	61.0	033	12	<u>6</u>	0
	301 - 1000 Transistors 301 - 1000 Transistors	(24 Pin DIP) (40 Pin DIP)	.03 3 .050	.07 4	.11 18	.15	-13	5 62 19	90 - 60	.63	5	35	.050	19	Ę	3.4
•	Programmable Logic Arrays (Ea = .4)		1 and	018	620	027	040	032	.037	440.	.061	054	0061	034	076	2.5
	Up to 200 Gates	(10 Pin DIP) (24 Pin DIP)	110	028	048	.045	065	054	.063	.077	0	.089	011	102	52	3.3
	1001 to 5000 Gales	(40 Pin DIP)	.022	052	-087	280	2	260.								
	MOS Technology						1			000	830	063	0057	550	074	12
- -	Gate/Logic Arrays, Urgital (car = .33)	(16 Pin DIP)	.0057	015	.027	.027	039	029	035	088	080	.083	010	053	12	6
	101 to 1000 Gates	(24 Pin DIP)	010	070	080	210	11	098	2	12	23	.15	019	.095 30	.21 89	333
	3001 to 3000 Gates	(128 Pin PGA)	049	2	.25	4	88.1	5 6	26 70		67	- <u>7</u> 2	0.084	99	0	17
	10,001 to 30,000 Gales	(180 Pin PGA) (224 Pin PGA)	084	312	5.5		12	265	69	.82		86	.13	63	-	5
5	30,000 to 60,000 Gates Linear Microcircuits (Ea = .65)				000	120	070	057	062	5	.13	.076	0095	044	960	
	1 to 100 Transistors		C500.	041	065	0.54	078	2	-	.22	24	13	017	.072	-15 9 9	• •
	101 to 300 Transistors 301 to 1,000 Transistors	(24 Pin DIP)	033	074	= =	.092	213	19 73	6.0	41	67	32.52	.05	16	95	4.6
	1001 to 10,000 Transistors		5	-												
	Logic Array, MOS (Ea = 35)			018	035	.035	.052	350.	.044	044	.070	010	.0046	044	2:	6. C
	Up to 500 Gales	(28 Pin DIP)	0056	021	042	042	062	042	.052	.053	0.084 880	.083	0000	053	20	, 0 , 0
	2001 - 5000 Gates	(28 Pin DIP) (40 Pin DIP)	0061	033	0.43	.063	500.		80	689 689	5	13	0095	079	19	6 .6
4	Microprocessors, Bipolar (Ea = 4)					100	5	¢†	13	17	22	.18	.028	11.	24	9.3
, 	Up to 8 Bits	(40 Pin DiP)	820	<u>9</u> =	18		53	15	24	32	39	.31	.052	29 50	41	5.G
	Up to 16 Bits	(128 Pin PGA)	=	23	86	.33	47	4	49	.65	1 8	-65	-	75	8	-
5	Microprocessors, MOS (Ea = .35)	(40 Pin DiP)	048	089	13	12	.16	16	17	24	59	22	.048	15	58	9.4 4.4
	Up to 8 bits Up to 16 Bits	(64 Pin PGA)	660	22	24	0 4	50 9 9	85	32	3 8	1.52	. 82	. 19 19	5 F	۰. 10	2
	Up to 32 Bits	(128 FIN PUA)	51.	5		2	3									

آبية بدوية ويؤتون والمراجع والمرجع

a a state a st

APPENDIX A: PARTS COUNT

	Generi (Defaulte: x _T Based on Ea	c Failure Rate Shown, Sold	• ¹ ¹ ¹ ¹	'allures'i eld Seal	DIPa/P	rii) far N B As (No	licrocircu . Pine a	alta. Se Showi	e Page n Below	A-4 for), _{XL} =	×Q Val 1 (Devia	lues ce in Pri	oduction	≥ 2 Yr.	6	[
Section	Part Type	Environ.→ T _J (°C) →	6 ⁶ 8	В	GS €	s og S og	NU 65	AIC 75	AIF 75	AUC 90	AUF 90	ARW 75	50 50	MF 65	75 75	പ്ര
5 2	MOS Technology Memories, ROM (Ea = .6) Up to 16K 16K to 64K 64K to 256K	(24 Ph DIP) (28 Pin DIP) (28 Pin DIP) (28 Pin DIP)	0047	018	036 043 045	0.035 0442 0442	053 068 068 068	.037 .045 .048	045 055 059	0.060 0.060 1.1 1.1	.074 .090 .099	.071 .086 .089	.0047 .0059 .0067	044 053 053 083	111	3 3 3 8 3 3 3 8
5.2	256K to 1 MB Memories, PROM, UVEPROM, EEPROM, EAPROM (Ea = 6) (NOTE 3, c, - 0 Ansumed for EEPROM) Up to 16K 16K to 64K 64K to 256K	(24 Ph DIP) (28 Ph DIP) (28 Ph DIP) (28 Ph DIP) (20 Ph DIP)	.0049 .0049 .0072	022	036	0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43	053 067 10	037 051 080	046 056 061	.049 .062 .073	.16 .16	.072 .087 .092 .14	.0048 .0062 .0072 .012	.045 .054 .057 .088	13 13 20	2.3 2.3 3.3
5 2	Memories, DRAM (Ea = 6) Up to 16K 16K to 64K 56K to 1256K 256K to 1	(18 Pin DIP) (22 Pin DIP) (24 Pin DIP) (28 Pin DIP)	0040 0055 0074 011	019 019 023 032	027 036 043	.027 .034 .040	.040 .051 .080 .077	029 039 049 070	035 047 080	.040 .056 .12	.059 .079 .10	.055 .070 .084 .11	.0040 .0055 .0074 .011	034 043 051 067	080 122	4 + + + + + + + + + + + + + + + + + + +
52	Memories. SRAM. (MOS & BIMOS) (Ea = 6) Up to 16K 16K to 64K 64K to 256K 256K to 1	(18 Ph DIP) (22 Ph DIP) (24 Ph DIP) (28 Pin DIP) (28 Pin DIP)	.0079 .014 .023 .043	022 034 053 092	.038 .057 .084	.034 .050 .11	.050 .073 .10	.048 .077 .127	.054 .085 .13 .23	. 083 . 14 . 25	10 117 127	.073 11 26	.0079 .014 .023 .043	.044 .065 .092 .15		2.3 2.3 2.3
5 2	81201ar Technology Memories, ROM, PROM (Ea = .6) Up to 16K 16K to 64K 64K to 256K 256K to 1 26K	(24 Pin DIP) (28 Pin DIP) (28 Pin DIP) (40 Pin DIP)	.010 .017 .028 .053	028 085 12		.046 .063 .065 .15	.007 .001 .12	.082 .095 .15	.070 .11 .29	10 10 10 10 10 10	13 13 13 13	.096 .14 .33	.010 .017 .028 .053	058 081 19	139 139 139	9.53.9 3.53.9
5.2	Memorles, SPAM (Ea = .6) Up to 16K 16K to 64K 64K to 256K 256K to 1 MB VHSIC Merocircults, CMOS	(24 PM DIP) (28 PM DIP) (28 PM DIP) (20 PM DIP) (40 PM DIP)	.0075 .012 .018 .033	023 033 045 079 1efter to 5	.043 .058 .074 .13 ection 5.	.041 .054 .065 .065 . <u>VHSIC</u>	.060 .079 .095 .16 CMOS	.050 .072 .18	058 083 20	077 112 35	33 22 25		.0075 .012 .018 .033	052 069 084	30 8 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	333
4	GaAs MMIC (Ea = 1.5) 1 to 100 Elements 101 to 1000 Active Elements (Dueut Drive and High Preve (> 100 mW))	(8 Pin DIP) (16 Pin DIP)	.001 3 .0028	0052	010	.010 .022	.016 .034	011	013	015	.022	.021	.0013	013 028	031	1.2
5	GaAs Digital (Ea = 1.4) 1 to 1000 Active Elements 1001 to 10,000 Active Elements	(36 Pin DIP) (64 Pin PGA)	0066	028	052	.052	.078 .15	. 10	.067 .13	.07 8 .15	.12 .23	20	0066	.065 .13	.16 .30	5.6 5.5

APPENDIX	A :	PARTS	COUNT
	~ .	1 /11/10	000111

Description			The state of the second s	
Description			MIL-SIU-BOS SCREEVIES (NOIE 3)	POIN VAIUATON
	Ç	:	TM 1010 (Temperature Cycle, Cond B Minimum) and TM 2001 (Constant Acceleration, Cond B Minimum) and TM 5004 (or 5008 for Hybrids) (Final	
Class S Categories:		÷	Electricats @ Temp Extremes) and TM 1014 (Seal Trist, Cond A, B, or C) and TM 2009 (External Visual)	50
Decorated in full accordance with Mill JM 20010. Class S racidimments.	_		This 1010 (Temperature Cycle, Cond B Minhum) or TM 2001 (Constant	
	26	2.	Accession, Cond & Minimum) TAS004 (or 5006 for Hybrids) (Final Electricate @ Timp Extremes) and	37
Procured in full accordance with MilI-38535 and Appendix B thereto (Class U).			This 1014 (Seal Test, Cond A, B, or C) and TM 2009 (External Visual)	
 Hybride: (Procured to Clease S requirements (Quality Level K) of MIL-H-39534. 	8534.	C	Pre-Bum in Electricats That 1015 (Burn-in B-LeverS-Level) and TM 5004 (or 5008 for Hybrids) (Thet Burn-in Becricats @ Temp Extremes)	30 (B Level) 36 (S Level)
Class. B. Categorhes:	-	:	TA 2020 Pind (Particle Impact Noise Detection)	=
1. Procured in full accordance with MIL 44-30510, Class B requirements.		4 0	Th 5004 (or 5008 for Hybrids) (Final Electricais @ Temperature	11 (Note 1)
Procured in full accordance with MiL-1-38536, (Class Q).	1.0		Eidremes)	
	6.4	•	TM 2010/17 (Internal Visual)	7
		*	TM 1014 (Seal Test, Cond A, B, or C)	7 (Note 2)
Class.B.1.Categoody		•0	TM 2012 (Radiog sphy)	~
Fully compliant with all requirements of paragraph 1.2.1 of MiL-STD-863 and procured to a	med to a	•	TM 2009 (External Visual)	7 (Note 2)
Mill, drawing, DESC drawing or other government approved documentation. (Udes not include hybrids). For hybrids use custom acreening section below.		0	TIA 5007/5013 (GaAs) (Waler Acceptance)	-
		=	TM 2023 (Non-Destructive Bond Puti)	-
		¥	2 − 2 + <u>E Point Valuations</u>	
Learning Factor - r _t			DOPRIATE FOR PLASTIC PARTS	
Years in Production, Y RI				
2.0		2 2 2 2 2	oiri valuation only assigned if used independent of Groups 1, 2 or 3. Siri valuation only assigned if used independent of Groups 1 or 2.	
5. 1.8		ଡ ୮ : ଟ ଏ : 	equencing of tests within groups 1, 2 and 3 must be followed. Minime to the MIL-STD-883 Test Method.	
1.0		z 	ontarmetic parts shoud be used only in controled environments (i.e., Gg and temperature/humidity controlided environments).	
1.5 1.2				
≥ 2.0 1.0			s: 10. performs Group 1 test and Class B burn-br: 1 ₆ 0 = 2 + <u>50+30</u> = 3.1	
rst = .01 exp(5.3535Y)		2 N	Tg. performs internal visual test, seal test and final electrical test: $x_{\rm Q}$ = 2 +	<u>87</u> 7+7+11 = 5.5
Y = Y ears peneric device type has been in production		0	ther Commercial or Unknown Screening Levels	- 10

MIL-HDBK-217F

APPENDIX A: PARTS COUNT

		Generic F	allure F	tate - λ _g	(Fallure							C	M.	ž	ت ن
		ۍ ۱ ۲	6	0	sz	Ĵ	AIC	AF	Å	₹ L	ARW	ŭ,	1	۲ ۲	- <u>-</u> -
Section	Part Type			E 92	8	8	75	75	6	66	R	20	6		3
-		1 ³ (³ C) → 30	8	3											
	DIODES										ţ	9100	076	23	1.5
		35.00	ACR ACR	()48	.043	10	.092	21	.20	44.	21.	01.00	5		ç
6.1	General Purpose Analog					1.07	024	.054	.054	.12	.045	.00047	.020	.060	04.
6.1	Switching	.00094	.0075	610.			ŭ	•	13	2.9	1.1	.012	.50	1.5	10
н Н	Fast Recovery Pwr. Rectifier	.023	.19	32	.28	18 .	ē.	t,		36	13	0014	090	.18	1.2
		0028	.022	600.	034	.0 82	.073	.16	٥١.	, ,	2		0.0	9	¢ •
61	Power Hechiner Schouky r wi.	6000	5	040	035	0.084	.075	17	.17	36	11	.0015	790	0	• •
6.1	Transient Suppressor/Vanstor	6300		000	550	200	066	15	13	.27	.12	0016	060	.16	р Г
61	Voltage Rel/Reg. (Avalanche	51:00 [.]	024	ACO.	200.										
	and Zener)						:	35	22	46	21	.0028	.10	28	2.1
9	Current Regulator	9900.	040	990	090	4 1.			96	2	1	64	16	67	350
c L		98. 98	2.8	8.9	5.6	8	=	14	00	5	1		۲ c	ţ	8
29			J.	2.1	1.5	4.6	2.0	2.5	4.5	7.6	4.6	٩٢.	0.0	<u>a</u> !	. (
6.2	GunnBulk Effect		2		0.0	050	005	032	.057	.097	.10	.002	.048	.15	N,
62	Tunnel and Back	4 00.	.0096	.020	810 ⁻	3		°0	40	69	12.	.014	34	1.1	8.5
с С	NId	.028	.068	.19	4	ŧ.	<u>.</u>	į	1	•	1 0	023	56	1.8	14
• • •	Schottky Barrier and Point	.047	F.	31	.23	6 8	30	.37	<u>م</u>	-	<u>4</u>				
;											5	1900	. 1	41	3.3
		C 10	ACC ACC	072	.052	.16	.069	.086	.15	.26	87.	HCOO.	2		
£ 2	Varactor	1			000	073	064	.14	14	.31	2 .	.0012	.053	16	
6 10	Thyristor/SCR	.0025	.020	1960.	020										
	TRANSISTORS								0.000		9500	000073	.0027	0074	.056
5.3	NPWPNP (1 < 200 MHz)	.00015	.0011	.0017	.0017	7 €00.	.0030	.900.	0000.	2		6200	11	29	2.2
	Power NPN/PNP (I < 200 MHz)	.0057	.042	.069	.063	ŧ.	.12	.26	Si Si	•	1 2	0069	.25	68	5.3
		.014	66 0	.16	.15	. .34	28	.62	50.			010	• •	3.6	30
0		002	24	19	74.	1.4	61	.76	1.3	2.3	2.4	S#0.	<u>,</u>	5	
69	SI FET (1 > 400 MHz)		i i		0	9 E	8.1	2.3	5.4	9.2	7.2	.083	2.8	-	2
6.8	GaAs FET (P < 100 mW)	11	۲ <u>۵</u>	<u>n</u> 1			2.4	5.6	13	23	18	.21	6.9	27	99
6.8	GaAs FET (P 2 100 mW)	.42	1.3	9 .	c. 7) (46	BO	74	1.6	.66	0079	31	88	6.4
96		.016	.12	50	81.	¥.	, .	2. ¥	6 F	2.3	2.4	047	1.1	3.6	28
96	BF. Low Noise (t > 200 MHz,	1 60	.23	.63	.46	4.1	<u>B</u>	n.	2					•	
	P < 1W)			ę	9	Ģ	18	.23	.32	.55	.73	.023	4	-	
<u>م</u>	7 RF, Power ($P \ge 1W$)	045	68	52	<u>•</u>	, , , ,									

Supersedes page A-5 of Notice 1

cont'd) Mr Cr Haw SF Mr Mr Cr 75 50 65 75 60	36 0057 15 31 12 16 85 013 35 1.2 16 015 00024 0063 021 28 20 0031 082 213 36 240 2.6 87 350 3600 400 4.5 150 600 6200	(itoris)	Lower Plastic 5.5 8.0 2.5 50 2.5	ing Seating
Hours) for Discrete Semiconductors (U AIC AIF AUC AUF) 6 75 75 90 90	20 084 .13 .17 .23 47 .20 .30 .42 .56 684 .0035 .0053 .0074 .0098 .11 .046 .069 .096 .13 .11 .046 .069 .096 .13 .11 .046 .069 .096 .13 .120 .58 .86 .86 .110 .200 .100 .150 .150 .200	FITs, Cross Field Amplifiers, Klystrons, TWTs, Mag	Semiconductor Quality Factors 7.0 JANTXV JANTX JAN JANTXV JANTX JAN JANTXV JANTX JAN JO 1.0 2.4 .70 1.0 2.4 .50 1.0 5.0 .50 1.0 2.0	 A.Q = 1.0 Holmeuc revealed 1.0 Nonhermetic with Facet Cost 3.3 Nonhermetic without Facet Cost
Generic Fallure Rate - λ _B (Fallures/10 ⁶ Env.→ G _B G _F G _M N _S N ₁ J _J (*C)→ 50 60 65 60 6	011 029 13 074 027 070 31 17 00047 0012 0056 0031 0 0062 016 073 040 5.1 16 78 39 5.1 28 135 69	See Section 7 (Includes Receivers, C See Section 8	Discrete bection Number Part Types 1, 6, 3, 6, 4, 6, 5, Non-PF Devices' 10, 6, 11, 6, 12 Opto-Electronics* 10, 6, 11, 6, 12 High Freq Diodes 2 Schottky Diodes 5, 6, 7, 6, 8, 6, 9 RF Transistors	6.13 Laser Diodes
Section Part Type	6 11 OPTO-ELECTRONICS 6 11 Photodetector 6 11 Opto-Isolator 6 11 Emitter 6 11 Aphanumeric Display 6 12 Aphanumeric Display 5 13 Laser Diode. GaAs/Al GaAs	6 13 Laser Diode, In GaAs/In 7 TUBES 8 LASERS		

APPENDIX A: PARTS COUNT

Supersedes page A-6 of Revision F

A-6

MIL-HDBK-217F NOTICE 1

7.0 8.7 0.7 7.0 8.7 \$.5 ₽ ک 2.5 4.5 4.5 3.6 7.0 7.0 7.0 7.0 4.5 4.9 7.0 4.5 \$ ę £1. ę ę <u>8</u> ę <u>8</u> ئ ⊾ S А <mark>М</mark> .0018 .0020 .0012 EHCIO: Not Normally used in this Environment
 I_A = Default Component Arribient Temperature (°C)
 Default Pwr. dissipation .5 watts assumed for all categories except RD, RWR, RW, RER and RE atyles. RD, RWR, RW: 8 watts. RER and RE: 40 watts. ໃ .19 ¥8 С. (Failure/10^{(§} Hours) For Resistors (Section 9.1) **≱**₽ €. 61. Ξ ଞ S. Ę = -Ξ Ξ Ξ Ξ Ξ Ξ Ξ ۲. ۲. Ξ Ξ Ξ Ξ Ξ ଞ Å₿ ₽ 8 Ŧ ₿ ¥ F Ξ Ŧ ₽₽ Ξ Ξ ğ r Y q ŝ g g ខ Generic Failure Rate, $\lambda_{\mathbf{G}}$ <u>s</u> ¥ ₽ Sr € \$*₽ Erv. → G₁₃ T_A (*C) → 30 g ML-A-ង g Ξ Š F ≧ EWE E ₽ Style E Ē E Ş ž ğ E E ₹ ₹ 뛽 툳 £ £ ħ ß đ Composition, Variable Nonwirewound, Variable Precision Film, Variable Wirewound, Variable, Power Wirewound, Accurate Wirewound, Accurate Wirewound, Variable, Wirewound, Variable Wirewound, Variable Wirewound, Variable, Wirewound, Variable Chassis Mounted Chassis Mounted Film, RN (R, C or N) Wirewound, Power Wirewound, Power Wirewound, Power Wirewound, Power Nonwirewound, Variable Semprecision Semiprecision Nonwirewound, = ∩ ∈ Part Type Film Insulated Film, Insulated Film, Network Precision Composition Composition Variable Film, Power Thermistor NOTES Film, Chip Ē

Supersedes page A-7 of Notice 1

MIL-HDBK-217F NOTICE 2

APPENDIX A: PARTS COUNT

Cuellity S Elitabilithed Reliability Styles Mit. SPEC

¥]≘

5.9 ŝ S ₽ س ß 3.8 3.0 ŝ ŝ ŝ ŝ Ļ ç ŝ **₽** = l**Σ** 8 -£ Z ₹ \$.0024 .0027 <u>کہ 18</u> ŝ ¥8 9 Ξ Ξ **₽**8 ĉ .00068 ۶s Ξ Ξ B I 1 2 8 § ₽ ₹°8 ŝ ÷0 Ξ ₽₽ မှာ မူ S S Ξ g S & ₹ 0 00-12 T_ (°C)→ 30 00-17 Env. J MILO ຊ ŝ CO. COR 80°.00 CU, CUR CZ CZH Я E SO Ł ğ g ទី g E O £ F Б Style Շ ð ರ δ § Metallized Paper/Plastic MICA (Dipped or Molded) Metallized Paper/Plastic Ceramic (Gen, Purpose) Ceramic (Gen. Purpose) Ceramic (Temp. Comp.) Variable, Air Trimmer Tantatum, Non-Solid Tantalum, Non-Solid Tantatum, Non-Solid Paper/Plastic, Feed-Part Type or Dielectric Paper/Plastic Film **Wetallized Plastic/** Variable, Ceramic Variable, Vacuum Metallized Plastic Variable, Piston Aluminum Oxide NO TES: Paper, By-Pass Paper, By-Pass Tantatum, Solid Tantalum, Chip MICA (Upped) MICA (Button) Aluminum Dry Ceramic Chip through Plastic Glass Glass

1) * Not Normally used in this Environment 2) $T_{A} = Detault Component Antblent Temperature (*C)$

3) Voltage stress = .4, R_{SR} = 1

4) Assumed capacitance (JF): CP, CA, CZ, CZP, CQ, CDPI, CH, CHR, CFR, CPH: 3.0; CM, CMR, CB: (1000; CYR, CY, CK, CC, CCR, CDPI: 20; CSR: 150; CMR: 50; CLR, CL, CRL: 1000; CU, CUR, CE: 8000; CV, FC, CT, CB: 0.00008

ML-SPEC 3.0

-12

¥ [°]

Established Reliability Styles **3, 8** R P .030 .10 .30

O

Quality

Ş

Supersedes page A-8 of Notice 1

A-8

(Failures/10⁶ Hours) for Capacitors (Section 10.1)

Generic Failure Rate, λ_{n}

MIL-HDBK-217F NOTICE 2

PARTS COUNT APPENDIX A:

APPENDIX A: PARTS COUNT

	U	ieneric Fal	lure Rate, A	(Fall	ures/10 ⁵	Hours)	for Indu	ctive, Ele	Ictromeci	hanical 6	nd Misc	ellaneor	is Parts			
Section	Part Two	·IIW	Env.+ GB	с	ы М	s N	P	≯ IC	AIF	Ŷ	₹	₩ H	ዹ	ž	₹'	ഗ
•			TA (CC)→ 30	9	\$	¥	\$	55	55	20	٤	58	8	45	55	9
	INDUCTIVE DEVICES															
=	Transformer, Switching	T-21038	.00081	.0042	0600	.0035	.012	.0051	.0067	0070	0600	.020	.00031	0001	029	Q
= :	Transformer, Flyback	1.27	.0058	040	085	033	Ξ		064	990	088	.19	0029	092	.27	4.0
= :	I ransformer, Audio	1 <u>-</u>	610 .	2	8 1		BN .	12	1	4	8j	Si j	.0075	₹ :	02	2
		/2-1	2	<u>8</u>	2.0	Ŗ	0.1		80.5	<u>9</u>	5.2	<u>-</u>	028	68 j	5.5	16
	Coil Eined Inductor or Choke	12000		B A:	0.2	0.02		2.1	C.1	9.1	2.1		0/0.	2.2	8.5 0 00 1	16
		01060		22000.	in the second	BIANO.	conto.	120001	00000.	Second.		- 3 .	ZMMM.	ICNON.	C100.0	2
112	Coil, Variable Inductor	C-15305	.00005	.00037	0000.	.00031	.0010	00044	00059	19000.	62000.	.0018	00003	.00085	.0025	007
	ROTATING DEVICES															
121	Motors, General		6.9	8 .8	8.3	6.8	8.3	13	13	8	8	13	6.9	•	•	•
121	Sensor Motor		27	27	ខ្ល	27	8	22	52	1.20+02	1.20+02	3	27	R	3	27
121	Servo Motor		5.4	5.4	8.5	5.4	6.5	₽	ç	ŝ	ន	2	5.4	6.5	5	5.4
121	Stepper Motor		1.2	1.2	4.	1.2	4.1	2.3	2.3	5.3	5.3	2.3	1.2	4 .	2.3	12
12 2	Synchros .		160.	.071	.47	.25	<u>2</u>	.19	.28	1.1	8.1	1.2	.016	2	1.7	24
12 2	Resolvers		.047	Ξ.	2	.37	0.1	.28	64	1.7	2.6	8.1	.023	81	2.8	•
	ELAPSED TIME METERS															
12.3	ETMAC		9	ଛ	20	R	18 0	8	80	160	250	200	5.0	1 1	88	•
123	ETM-Inverter Driver		5	8	180	105	22	75	120	240	375	98 0	7.5	210	570	•
133	ETM-Commutator DC		99	80	480	280	720	200	ଝ	640	1000	1040	20	290	1520	•
	RELAYS															
131	General Purpose (Bai. Arm.)		049	.12	1.0	50	1.9	.60	11.	1.3	1.4	3.9	.025	1.7	5.7	•
131	Sensitive (Bal. Arm.)		66 0	.25	2.1	8	3.7	1.2	1.5	2.5	2.8	7.9	.049	3.5	=	•
101	Dry Reed		.059	.15	1.2	8	2.2	2	. 8 3	1.5	1.7	4.7	0:00	2.1	6.8	•
131	Thermal Bi-metal		660	.25	2.1	6 6	3.7	1.2	1.5	2.5	2.8	7.9	049	3.5	Ξ	•
131	Magnetic Latching, (Bal.		.049	.12	1.0	S.	1.9	9 9	11.	1.3	1.4	3.9	.025	1.7	5.7	•
13.1	Contactor, High Current		049	12	01	05	1.9	60	11	1.3	4.1	6 E	025	1.7	57	•
1	(Solenoid)						1			2						
132	Solid State, All		.029	.087	જ	.17	Ş.	36.	.55	.61	8	.67	.012	.35	8 i	17
	SWITCHES	See 14.1														
4	Dual In-tine Package		00012	9000	8 8	96000	9000.	.0012 .0012	0022	.0016	9209	.0055	9000()	0030	0800.	.14
			E) F	2	23	5 :	1.20+02		= ;	88	8 8	2.00+02	2.2	1.10+02	2:50+02	5.28+03
	Contriducion of the second sec		÷	<u>,</u> ,	- G		6 0 7 0		- a	3 2	5.0		Co.	2 °	R 7	CU140.3
141	Read		0010	0000	018	0080	8	0100	018	510	8		00050	500	047	1 2
.41	Rocker		.023	690	41	8	.67	23	Ŧ	8	15		012	57	15	8
141	Rotary		Ξ.	ų	2.0	88.	3.2	1.1	2.0	4.1	2.4	5.1	.055	2.8	7.4	1.3++02
14.1	Sensitive		64.	1.5	8.8	3.9	1	4.9	8.8	₩.8	=	ន	.25	12	8	5.90+02
1	Thermat		.031	.093	56	.25	8	.31	.56	04	8 9.	1.4	.015	11.	2.1	37
141	Thumbwheel		.18	¥.	3.2	4.1	5.2	1.8	3.2	2.3	4.0	8.3	06 0	4.5	12	2.2e+02
-	Toggle		9 .	8	8.≞	80.	2.9	1.0	1.8	1.3	2.2	4 .6	.050	2.5	8.7	1.20+02
142	Circuit Breaker, All		8.	¥.	ē	5.4	2	4.8	6.1	7.5	0.2	31	ę.	11	\$	•
	CONNECTORS			5962		a			0000	910	ž					
2		iteria		2 <u>2</u>		5	9 <u>5</u>	ŝ	2000.	91.N.	g a	100		50.	5	ē į
			5	200.	P	6 6	9 P 7 C	s z	ۍ. •	2	0 F					8 2
	Dark and Darel					1			<u>v</u> :				200	5	2.0	R 5
151	Rectangular		090		5 2	5	3	2 8	2	5 2		7	520	çi y		2 8
15.1	RF Coastial		00045	00053	0046	.0027	.0075	0050	0034	0067	0100	.013	(10022	0058	018	26
151	Telephone		0082	.0097	.CI85	640.	* .	037	.062	12	8 .	.23	1900	н.	33	4.8
15.2	IC Sockets (DIP, SIP, PGA)		.0035	.011	049	.021	080	028	.042	600	946	980.	.0018	.049	13	2.3

APPENDIX A: PARTS COUNT

		Generic Fi	ilure Rate, 7	le"	ures/10 ⁶	Hours)	for Induc	tive, Ele	ctromect	ianical ai	nd Misce	llaneous	Perts			
Section	Part Type	, Mi	Erv. + GB	ъ,	м С	z	2	ÅK A	AlF A	ş	7	New Y	SF	¥	z	0
*			TA ("C)→ 30	40	S 1	ą	\$	5	S	R	R	8	- 8	- 1	2 2	ۍ ځ
16.1	Plated Through Hole Circuit Boards		022	045	.16	Ŧ	8.	=	18	96.	.62	.42	011	22	99	
16.2	Surface Mount Tech, Circuit Boards		5200.	.37	1.8	8.1	42	G.1	6 .1	Я	8	6 .1	.0025	=	3 =	: =
	SINGLE CONNECTIONS															
17.1	Hand Solder, w/o Wrapping		.0013	0028	1000	.0052	.014	.0052	92.00.	82.00.	0100	.021	.00065	012	031	¥ V
1 2 .	Crimo		20-00.7	41000	61000.	00028	.00077	00028	00042	.00042	95000.	.001	3.5e-05	00063	2100	80
+ 2 +	Weid						6200. T 10000	0100	.0016 20 20	.0016	.0021	.0042	.00013	E200.	0062	Ξ
17.1	Solderless Wrap		8.8 08	1.40-05	4.80-05	2.74-05	7 54-05	5.09-03 2 20-05	9.0e-05	9.0e-05	.00012	.00024	7.58-06	00013	90000.	.0063
171	Clip Termination		.00012	.00024	00084	81000	C100	00048	000	00073			3.40-06 5.0-05	6.1e-05	.00016	0029
1.7.1	Reflow Solder		6.9-05	4-1000.4	81000.	00028	82000.	00028	000	00041	99000		8-09-09 9-09-09 9-09-09-09-09-09-09-09-09-09-09-09-09-09	1100	60 29 51 50	020
• ~ •	Spring Contact		-17	9	1.2	8	9 ,1	81).	1.0	1.0	¥-1	2.7	0.95	20000.	100.	80 F
			88	5	€7.	8	8	.25	.37	.37	<u>8</u>	66	160	28	- 40 F +	. *
181	DC Ammeter or Voltmeter	M-10304	8	ai C		•	6	•								
18.	AC Ammeter or Voltmeter	M-10304	0.15	0.61			9.V			2.2		5.4 4	660.0	5.4	V N	N/N
191	Quartz Crystals	900C-3	032	8	32	q	5	2	5	A	=	8.2	0.17	9.2	N/A	N/A
201	Lamps, Incandescent, AC		3.9	78	:	2	;	; ;	5	2	3	5	.016	.42	1.0	16
1 02	Lamps, incandescent, DC		t 1	2	: 2	: :	2	2 2	2	23	81	18	2.7	16	8	8
	ELECTRONIC FLIERS						5		ō	8	=	J	9.0	51	7	350
211	Ceramic-Ferrite	F-15733	.022	8	.13	88 0.	8	15	20	24	8	2				
	Discrete LC Comp.	F-15733	.12	.24	.72	84.	1:1	.84	-	1.3					B 1	7 Q
21.1	Discrete LC & Crystal Comp.	F-18227	.27	5	1.6	1.1	2.4	1.B	2.4	3.0	3.5	9.0	80. C	g <u>-</u>	80. •	4 6
1.57	1-USES		.010	.020	080	050.	=	0 80.	.12	15		18	e e e		; ;	,
												2	200		5	
OTES.	1) • Not normality used in this	emironment.														
	2) T _A = Default Component Ar	mbient Tempe	rature ("C), s _f be	Bed on T.	shown.											
	3) Motor assumptions: 10 yr.	(67800 hours) design life assu	C Sync	thros/Recol	. ets .iue.	0-16 1 hn	shoe: CTUs								
	4) Relay assumptions: Rated	Temp. = 125	C, SPST, Reelst	Twe Load, S	3 - 5, 10 G	cleinhour.			·							
	5) Switch assumptions: SPSI 6) Connector assumptions: a	T; Circuit tree	kens: DPST, not		ewitch.											
	Plated from the clouder		er stolprine. Moner 4000 meri	iel - chien e		-										
	using the default AT values	shown in Sec	1000 16.2.		urae' e baarue	15, no nang	soloenng; 5	SMT CIrcuit	board desig	n assumptio	ins are sam	e es those	shown in Se	ection 115.2 (example	
	 Quentz crystel essumptions Lamp essumptions unilization 	: 50 MHz	ant mine													
			KO VUILIANING.													
																-

	0,	Latabliabod			
Saction #	Part Type	Reliability	MIL-SPEC	Non-MiL	
11 11 0	Inductive Devices	.25*	1.0	3.0	
101 100 102	Rotating Devices	N/A	N/A	N/A	
12.1, 16.6, 16.0	Belave Mechanical	.60	1.5	2.9	
13.2	Relays, Solid State and Time Delay (Hybrid &	N/A	1.0	1.9	
	Solid State)				
14.1	Switches, Toggle, Pushbutton, Sensitive	N/A	1.0	2.0	
2 4 1	Circuit Breakers	N/A	1.0	8.4	
	Connectors	N/A	1.0	2.0	
с ц С	Connectors. Sockets	N/A	Ċ,	1.0	
1 T	Plated Through Hole Circuit Boards	N/A	1.0	2.0	
16.2	Surface Mount Tech. Circuit Boards	N/A	N/A	N/A	
171	Connections	N/A	N/A	N/A	
8	Meters, Panel	N/A	1.0	3.4	
101	Quartz Crystals	N/A	1.0	2.1	
	Lamos. Incandescent	N/A	N/A	N/A	
	Electronic Fitters	N/A	1.0	2.9	
22.1	Fuses	N/A	N/A	N/A	
					ł

 π_{O} Factor for Use with Section 11-22 Devices

Supersedes page A-11 of Notice 1

MIL-HDBK-217F NOTICE 2

APPENDIX	A:	PARTS	COUNT

· Category applies only to MIL-C-39010 Coils.

APPENDIX A: PARTS COUNT

S Comments			Voltage Stress = .7, Metallurgically Bonded	Voltage Stress = .7, Metallurgically Bonded	Contacts Voltage Stress ≂ .7, Metallurgically Bonded	Contacts	Metallurgically Bonded Contacts Voltage Stress = .7, Metallurgically Bonded Contacts	Metallurgically Bonded Contacts	Metallurgically Bonded Contacts		Rated Power = 1000\V		Multiplier Application Voltage Stress = .7, Rated Forward Current = 1 Amp	Voltage Stress = .5, Switching Application, Rated	Vottage Stress = .8, Linear Application, Rated Power = 100W	MOSFET, Small Signal Switching	NUSTEI Low Noise Application, 1 ≤ f ≤ 10 GHz, Input and 1 Outout Matching	Puised Application, 5 GHz, 1W Average Output Power, hput and Output Matching	Voltage Stress = .7, Rated Power = .5W	1 GHz, 100W, T _J = 130°C for all Environments. Vottage Stress = .45, Gold Metallization, Pulsed	Application, 20% Duty Factor, Input and Output Matching
nducto	뗥										5 0.0 5 0		1.0	11.	5.5				<i>TT.</i>		
Semico	Α ^π									0.0.	0.0		2.5	.70	1.5	.70	1.0	1.0		1.6	
crete	မို	u Table	1.0	1.0		0.1	1.0	1.0	1.0			1.0									
for Dia	¥ ۲	ed with A	.42	42		47	1.0	1.0	1.0			1.0	.51	.21	÷5.				66.		
neters	M	its provid															1.0	1.0		1.0	
Param	۴Ţ	All Defau																		.36	
Default	æ		0038		100.	.025	.0031 .003	002		.22 18	.0023	.027	0025	.00074	.00074	.012	.052	.13	.0083 18	80.	
	Part Type	MICROCIRCUTS			Switching	Fast Recovery Power Rectifier	Transient Suppressor/Varistor Dower Bechtler		Voltage Heilineg. (Avalancie o Zener)	Current Regulator Si Impatt (s 35 GHz)	GUNNBUIK ETHECT Tunnel and Back	PIN Schottky Barrier and Point Contact	(200 MHz 5 frequency 5 35 GHz) Varactor Thyristor/SCR	TRANSISTORS	Power NPN/PNP (t < 200 MHz)		SI FET (1.5 400 MHz) SI FET (1.5 400 MHz) GaAs FET (P < 100 mW)	GaAs FET (P ≥ 100 mW)		HF, LOW NOISH, CHOICE (1 > 200 MHz, P < 1W) RF, Power (P ≥ 1W)	
	Section	₩ C v	ļ	- 0	6.1	6.1	6.1	- ·	<u>.</u> م	6 1 6 2	6 5 6 5	6.2	6.10 6.10	ر ب	n r o r) · ·	ດ ຊີວິດ ເຊີ	8 .9	6.5	6.6	

A-12

Supersedes page A-12 of Notice 1

· •

			 APPENDIX A:	PARTS COL
Drs Comments	Phototransistor Phototransistor, Single Device LED 7 Character Segment Display For Environments with $T_J > 75^{\circ}$ C, assume $T_J = 75^{\circ}$ C, assume $T_J = 75^{\circ}$ C, Forward Peak Current = .5 Amps ($\pi_1 = .62$), Puised Application, Duty Cycle = .6, Pr/Ps = .5 ($\pi_P = 1$) For Environments with $T_J > 75^{\circ}$ C, assume $T_J =$	75°C, Forward Peak Current = .5 Amps (π _i = .62). Pulsed Application, Duty Cycle = .6, Pr/Ps = .5 (π _p = 1)		
nducto ⁿ R				
Semico ^{II} A	L: L:			
ncrete :				
for Dis ^R S	1.0 (त्रू) 1.0	(#p)		
neters "M				
r ⁷ T				
Default	.0055 .013 .00023 .00023 3.23 3.23	3		
Part Type	OPTO-ELECTRONICS Photodetector Opto-Isolator Emitter Alphanumeric Display Laser Diode, GaAs/Al GaAs	In/GaAs/In GaAsP		
Section #	0000 0000 0000 0000 0000 0000 0000 0000 0000	0 0		