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1.1

CHAPTER 1
INTRODUCTION AND BACKGROUND

The subject of redun-:incy has been a popular topic for papers on reliability since the late 1950's.
Most provably Von Neumann's contributions in the 1940's relative to the application of Majority
Voting schemes to computers provided the nucleus for much of this work (although his original efforts
were not concerned primarily with improving electronic hardware reliability). Although many authors
wrote on the more simplistic features of redundancy, three stand out as those who are referenced
frequently in papers by other authors: Balaban (4)*, Moskowitz (28), and Kneale (25). They wrote
primarily about unsttended redundant systems, for the most part ignoring the effect of sensing and
switching elements. The impact of such factors was considered later by such people as Grisamore (11)
and Aroian (2). In all of these, the figures of merit of concern were Reljability, expressed as the
probability that the systems would remain operational over a given period of time, and Mean Time to
First System Failure.

In the early 1960’s, interest began to center on formulations for redundant systems which were
maintained. At this time, the traditionai reiiability figures of merit were augmented by an additional
figure of merit called Availability. During this era the primary tool used was the Markovian process.
The foremost pioneer investigators in the area of maintained systems were Barlow and Hunter (6),
who introduced what is now known as the Ava;lability measures (both time dependent and limiting)
for full on systems. Shortly thereatter, Epstein and Hosford (17) for the first time defined the
reliability, probability of no system failure over a veriod of operating time, and mean time to first
failure of both full and standby redundant configurations. Later Dick (12) defined the Availability
figures of merit for a group of two unit redundant systems uuder different operational scenarios.

The Markovian Procedure was in general rather cumversome to use and as a consequence, in the
years that followed, approximation procedures were a topic of quite a few papers; for example,
McGregor (27), Applebaum (1), and Einhom (16). Dick (13) was the first to develop a rather simple
appreach to evaluate the mean time to first failure of a full on redundant system.

The purpose of this report is twofold:

(a) to present the information and tools necessary to evaluate most of the types of
redundancy problems with which a reliability engineer is faced; ' .
b) to present new simplified approaches to redundancy analyses which provide time savings

compared to the classical methods.

As indicated previously, many papers have been published about redundancy. Most arc repetitiors,
except for minor variations. Those that are nor repetitious are published in various reports or
symposium proceedings. widely separated by years.

To the typical analyst charged with the evaluation of the reliability of a redundant method, this
presents scrious problems. What is required, and part of the subject to which this document pertains,
is a survey of the basic redundancy literature to make available in a single document, information such
that the vast majority of redundancy design applications encountered can be evatuated.

For the most part, the most widely used and strongest evaluation techniques available are complex
and time-consuming to apply (especially for repairable redundant networks). This document contains
unique evaluation approaches and/or results which are in many instances less complex and less
time-consiming than the traditional approaches.

A summary of the subjects covered in this thesis is shown in Table 1.1.

1.2 Background

In order to cope with the military technological developmients of the past fiti “n years, electronic
systems have been compelled to expand in toth sizc and complexity at a rapid «te. Of equivalent
importance to the need for this growth has been the coincidentai reed for greater system rcliability and
maintainability. As military and space requitements necessitate the construction of ¢cven more
complex systems, the contemporary philosophies of reliability and maintainability will become
inadequate for the successful performance of mission objectives. The most severely affected systems
will be those on which maintenance cannot be performed, such as satellite-borne systems, and

1
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TABLE 1.1
A SUMMARY OF REDUNDANCY TOPICS

NON-REPATRRABLE SYSTEMS REPAIRABLE SYSTEMS

Fuil on Redundancy Full on Redundancy
* Traditional Approach * Markovian Approach

¢ State Analysis Approach Combined Unit Approach
Expectation, Transition Approach

-

¢ System Failure Rate Approach
Standby Redundancy ¢ Periodically Maintaincd
* Traditional Approach Systems
* Perfcct Switching * Impact of Redundancy on
* Imperfect Switching Maintainability
Efficient Levels of Redundancy Standby Redundancy

* Markovian Approach
» Expectation Transition Model

strategic military systems where the luxury of even a small down time cannot be afforded. At this
time, the only recourse to such situations is the creation of components of increased reliability or the
application of redundancy.

In order to increase the reliability of complex efectronic systems, a constant effort is made to
improve the reliability of the component parts comprising s.«ch systems. The rate of improvement of
component part reliability, however, lies significantly below the rate of increase of system
complexiiy. In addition, it must be realized that the attainment of 100% reliability for 4 component
part is impossible. The only recourse then is redundancy (the addition of duplicate elements).

Redundancy may be achieved in many ways. Each has its advantages (reliability gain) and its
disadvantages (the number of duplicative elements required which impact on total system weight,
cost, volume). The purpose of this report is to explain the rationale for cach type of redundarcy
considered and tc develop means of evaluation such that the reliability potential of cach may be
assessed and tradeoffs made.

1.2.1 Measures of Reliability

The following reliability measures will be used in this study. (1) Mean Time to Failure M; (2)
Probability of Failure free operation for specified time t, denot..d by R(1); (3) P(1), the probability that
a system will be functioning at time t. For the non-maintained system R(t) = P(1) and for the
maintained system R(t) # P(f).

The following relationships exist:

M= /7t W(t)de (1.1)
0

where W((} denotes the failure density function.
Now:

W(t)= ~ f%g—'i)— (1.2)
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Hence:
we 0o ¢ SR g (1.3)
dt
0
Integrating by parts:
M~ t R(E)| T + TR (1.4)
0 o
Now O-R(0) = 0 and .
¢ ,
- J h(x)dx
lim t R(t)= 1im te C
oo oo +0
where h(x) denotes the hazard rate, i.c. h(x) = —\%x—))-
Hence: X
-]
M=/ R(t)dt (1.5)

0

Since the expression for R(1) is a probabilistic function, its fonnulation will involve the
combination of probabilitics (Reliabilities) of success, or survival {(over a given period of time), for all
the units making up the system in question. Where redundancy does not cxist, the failure of any one
unit results in system failure and R(t) is comprised of the product of the reliabilities (probabilities of
survival for a given period of time) of all units comprising the system.

R() = wR() (1.6)

When the system is composed of redundant units, numerous possibilities for system survival exist
(with no redundancy the system can survive only if no units fail in the given period of time), hence
R(t) must be defined in terms of complex combinations of probabilities rather thau as a simple
product. For this reason, the following section on simple probability theory will serve as necessary
background for the definition of R(1).

1.2.3 Probability Basics

Given t+> mutually exclusive events A and B, the probability of either occurring is the sum of their
probabilit -

P{A+B)= P{A) + P(B)

PN AA
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This follows from the fact that, in general, if we have K mutually exclusiveevents B, B,, B,, . . . B,
then:

X
P (Bl+82 .o Bk)- iElP (Bi)

If two events exist that are not mutuvally exclusive {say A and B), the probability of one or more
occlrring is:

P(A+B)= P(A) + P(B) - P(AB)

For three such events:

P(A+B+C)= P(A) + P(3) + P(C) - P(AC) - P(AB) - P(BC)

+ P{ABC)

i Generalizing to K non-mutually exclusive events B,, B, . . .B,, the probability of one or more of
the events occurring may be ‘defined as:

P(B, + B, ...B) = £ P(B) — P(B,B,
- P(BB) ~ ....P(B, E,) + P(BB,B,)
+ P(BBB,) + P(B,,B.By) + .....
+(-1)% P(BB, ...BY .....

If events A,, A;, A, . . .A, are independent and the probability of occurrence of all events is
desired, the prebability that all occur P(A,A,A, . . .A,) may be calculated as:

P(AA, ...A; =l{rlP(A,)

Equating the term, event, with cither a failure or a success and the probability of an event with the
probability of failure or the probability of success, the relationship between R(t) and probability
theory is immediately evident.

1.2.4 The Block Diagram

In order to complete the picture for evaluation of R(t), the conceis of probability must be applied
to the system block diagram. From the reliability block diagram, and the definition of each block’s
reliability (probability of survival for a given period of time) an expression defining :ystem reliability
may be developed.

Figure 1.1 shows such a block diagram made up of two units, A and 3. The system will operate

successiully if either unit A or unit B or both units are operative and will be considered as faiied if
both A and B fail.

&
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Let us consider the event that A survives a period of operation and define the probability of such an

event as R(t,).
Letus consider the event that B survives a period of operation and define the probability of such an

event as R(ty).
Note that the survival or failure of either A or B does not and will not affect the survival or failure of

the other, hence A und B are considered independent.
Note also that just because unit A survives, unit B does not have to fail and vice versa (both units

can fail or survive); hence the events are not mutually exclusive.
Therefore, the probability of systein survival is equal to the probability that A or B or both survive. i

e,

‘ P(A+B)= P(A) + P(B) - P{AB)

or R(f£)= R(tA) + R(tB) - R(tA)-R(tB)

Figure 1.2 shows a block diagram made up of three units: A,B, and C in series. The system will
operate successfully only if all threc units are operative. The system will fail as soon as one of the

three fails.
Let us consider the events that A, B, and C survive a period of operation and definc respectively the

probability of such an event for each R(t,), R(ty),.R(t).

I . M A k8 b [l S P NS PN~ TP Y v o

Figure 1.1 Two Redundant Units

P 8D o drlnlly, il o e’ msene B

Figure 1.2 Three Series Units
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P(A, B, C )= P(A)'P(B)-P(C)

or R{t)= R(tA)'R(tB)'R(tC)

1.2.5 Types of Redundancy:

The discussicns that follow will concern themselves with two basic classes of Redundant Systems:

A. Systems which are redundant and which are non-maintained (failed units of a redundant
complex are not repaired or replaced). This situation is commor. to unattended applications,
i.e., an unmanned field site, a satellite etc.

B. Systems which are redundant and maintained (failed units of a redundant comple.: are
repaired and replaced). This situation is common to attended upplications, i.e., manned site.

For each class several types or varieties of redundancy are considered. In ali cases we will assume

that the units have times to failure hsving an exponential distribution described by the probability
density functi~a:

INT S

4Nk

-

r(t,A)= xe At

>
v v
[eR =)

A= failure rate of unit

t= operating time in question, and

R(t)= fmr(t,A)dt- e"At- probability that unit will not fail
t

during operating time t,

1
(1
:
|
{
!
]
!
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CHAPTER 2
RELIABILITY MODELS FOR NON-REPAIRABLE SYSTEMS

2.1. Fuil on Redundancy (Single Unit Necess:ty For Survival)

The most widely discussed form of resundancy for a situation not invoiving repair has been a )
: series ammangement of a number of (N) redundan clements as shown in Figure 2.1. In this type of
F recundancy, ali LN units are continuously energized,” and it is assumed that so long as at least one
unit is functioning properly on :ach of the L cascaded subaystems, the system g5 a whole will operate
successfully. The reliability of such a redundant system is obtained as follows:

Let: L.~ number of cascaded subsystems composing ti¢ system.

N= nymber of continuously energized units comprising each suvsystem.

A= failure rate of each redundant unit.
(For convenience, N end A are taken to bz the same for all units comprising the system).
* - Hence the tena Fuli on Redundancy.

T

VLD T e SR T T TR WY 1 E A W T

by @B Ior e s e e @O e o
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PO - O ‘i o
Figive 2.9, L Redundant Subbsystems in Series
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We assumne that the failure rate of cach unit is given by an exponential distribution with parameter
A. Then we have:

— The reliability of any unit (i) equal R{t) = ¢*.

~— [The probability of any unit failing in time t] = i—e™.

— [The probability of all N units in a subsystem failing in time t) = (i—e"Y'.

-~ The probability of at least one unit in a given subsystem surviving = [ 1—(1- ~e™MN].

The probability of all L subsystems having at lesst one operating nunit is thus given by:
RO = (1- (1-e)T" @.1)
As shown earlier, the mean time to failure is . j ® R(t)dt. Therefore, the system meun time to

first failure is:

Mo {1~ QeePHNFar (2.2)
0

After some manipulations, (sec Appendix A), this expression reduces to the following simpie
form:

L kN
w1 1 D) s (2.3)
k=1 s=1
The quantity of interest, AM, where:
A Mee MTBF of the system
MTIBF of a unit -
i»; thus given by:

L kN

et (-nFH (i) L 1/s (2.4)

kel Tog=1

The mean times to failure of redundant systems which selected values of N and L are shown ir.
Figure 2.2. As can be noted from this figure, order of magnitude increases i systein mean life over

element mean life are not possible unless extremely large values of N are empioyed.
A special case is considered when L= 1. This defines a single subsystern comnposed of N parallei

(redundant) units. It follows from Equatin (2.1) that the relationship depicting reliability 1s:

R(t)= 1= (lea  HN (2.5)
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NL = Totai number of components in system. A factor of | .ipsovement of redundant
stem mean lif2 over simplex system mean iife may be found by muitiplying the value
etermined for AM by L. A= failure rate of a single system element: M = system mean

life
]
Figure 2.2. AM Relationships For Full On Systems l

with corresponding meantime to first failurc:

M= 71 (e MHMae

0
N »
a 1/A 5 L/ /04 1720 + 130 +... 1/NA(2.6)
3re
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Note that when N== 2, the familiar 2 unit redundancy example, we have:

3
¥ 3

The above equations provide a means to develop the R(t) relationship for a system containing L
subsystems each with a diiferent number of units N in parallel. Thus:

L N
k()= 1 [1- (a-e”*% 4 (2.7)
1=l
) with corresponding mean time to first failure given by:
w I, hul
M« ;1 [1~ (1~e"1%) ildt (2.8}

0 je3

2.2 Binomial Redundancy (multiple operating units required); Full on Redundancy

This type of redundancy is identical to the one described above except that the system may be 1
considered as a large subsystem composed of N fully energized parallel units and requires a minimum i
l

|

of D(D%N) operating units (non-failed units) in order to operate.
This type of a system may be described probabilistically by the binomial distribution:

.

N

R(E)= £ () (e E)F (1-e72E) Nk (2.9)
k=D
with corresponding mean time to first failure given by: :
~ é
o N i
M= J R(t)dt= 1/X I 1/k (2.10) |
0 k=D {

2.3 State Transition Medel: Full on Redundancy

An alternate means of developing the relationship for mean time to first failure is (o consider the
concept of system states and the concept of transitior: from one state to another.

The system starts out initially with N units operating. Since we are not considering the concept of
repair in this particular situation, the system will experience a unit failure aud be reduced to (N-1) :
operating units; will eventually experience a second unit failure and be reduced to (N-2) operating :
units, etc., until only D uniis arc operating. The next failure which occurs vesults in only (D-1) units ;
operating and will cause the system to fail. ‘

Let By (k = 0,1, .. .N—~D+1) represent the state that the sy: :sm has (N-k) units operating. Since ;
this is a non-rep~ivable system, the system will transition from state Bw, to state Ex..,. Each state has ;
an aversgc time to nansition into the next possible state (E,, to Ey,,) given by: :

NP TIPS T A Y
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M(N-R/N“k-l)- l/A (N-k)
A= failure rate of cach unit.

Since the transitions must occur in sequence, the mean time tc transition from state Ey, to By, is given
by:

N-D N-D
Me I M = I 1/x(N-k)
=0 (N-k/N-k~1) | .o
N
w1/ ¢ 1l/k
k=D

and which corresponds to equation (2.10).
Nommalizing as before yields:

N
AM= © 1/k (2.11)
k=D

Figure 2.3 shows a plot of reliubility improvement for this type of redundancy.

2.4 Standby Redundancy (single unit necessary for survival)

A second type of redundant system which possesses a similar configuration t0 the system:
previously described, but employs switched-in redundancy is that iliustrated in Figure 24,

In this instance only one clement of each of the cascaded subsystems is activated at a time. Upon
failure of this element, the next elenient of the subsystem will automatically be switched into
operation. Until such a switch occurs, the stundby element is not energized and hence a failure rate
A= 0 is assumed. In order to hypothesize an apper bound for the reliability of such a system, the
failure rate of the switching device will be equated to 0.

Tn this model, the successive failures form a Poisson process with rate A. Then the reliability of the
system will be given by:

N--1
R(t)= & p(r,t)
=0
N-1 Y
-At (At
= L e Qe (2.12)
ra() r!

where P(r,t) = Probability of r failures in time t and At represents the number of failures expected in
the time period t, and N the number of redundant units composing each subsystem.
Since:

b
[P A8 e 1/
0 r!

11
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we have the mean time to first failure as hefore, !
[
1
= TR(E)dE i
0
N-1 r
- 75 e At (At) dt }
0 r0 r! .
N-1 1
- T 1/x
r=0
- N/ | (2.13)
10;-— T T T
- T
)._. - . -
s—— —
9
1
A
M -
BF—— 1
.4.L.._.._..—..
| S —
1| L.x
1 2 4 6 10 20 100
N
N = numbxzr of units in a subsystem
A = fallure rate of any active subsystem unit
D = number of units necessary for subsystem operation
Figure 2.3 AM Relationships for Full en Subsystems i
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AM= N, (2.14) , i
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1 ' . ' ;
The reliability of a system composed of L. such subsystems may be shown to be: L]
!
i3
N"’l . r L i
: keye [ertp 28] (2.15) |
{ =0 1! :
The mean time to first failure of such a system is given by: , 1
‘ .
o ap N1 oL =
Me 7 R(t)dt= S [e At g —(-'\—t)-—J dt (2.16) ; I
! 0 0 r=0 ¢! : )
D
i
C 3
o .
~ Co ¥
| .
A
i 5 1
| '
| .
[ P
i v .
¢ e Py
i‘ ' |
, | I-
b ! ? !
P :
!- : R
i«f |
| - SWITCH } |
b i i
N 1 !
| - : ) ;!
. ‘ [PSp—— | B l
' - N
3 , Figure 2.4. Switched-In Redundancy Example J—
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A general evaluation of this equation for various values of L and N is difficuit. However, if a
specific value of N is stipulated, an explicit form can be obtained for any value of L by a serics
expansion.

Let N= 2, then:

N-1 L
Me Pl ok (O Jae
0

=0 «r!

1 Y
- j.w o LAt (% ()\t)__.)L dt

0 =0 !

o -~ LAt
e

~ [ 1+ J\t)L dt

0

L
- S s Dy oot a
0 =0

: Lt (2.17)
5 - : .
=0 ALY oy

where the last equation is obtaincd by integration by parts.

A plot of improvement of N= 2 appears in Figure 2.5. In order to more easily evaluate the oaders of
improvement in meau life realiz d in this type of redundancy, a comparison on a subsystem level is
made in Figure 2.6 of this concept of redundancy, vs. the concept depicted in Figure 2.3.

As may be noted from Figure 2.6, greater increases in magnitude in systcm mean life over element
mean lifc may be realized by utilizing this cencept rather than the full on redundancy concept
previously described.

Examining this redundant design carcfuily, it becomes obvious that sensing devices are necessary
to detccet each failure, and switching mechanisms are regrired to activate and deactivate clements. In
practical situations, the present limits on the refiability of conventional sensing and switching devices
limit the reliability potential of the scheme.

Another form of biromial redunancy may be cncountered when the system (subsystem) is
composed of N identical units. A subset of I units out of N is choscn to form a working system
(subsysten). Elements of the working system (subsystem) which fail may be replaced. The units
which are not a part of the working system are assumed to be standby units and have a failure rate A=
0. It is sssumed that failure-free switching, sensing, and interconncection methods are utilized in order
to determine an upper bound reliability for this system type.

In this type of redundant system, since D units arc always working, the failures of this subsystem
form a Poisson process with rate AD. Then the system reliability will be the probability that the system
has & maximum rnumber (N-D) of failures in the time period t, i.c.:

Lo .
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N-D
R(t)= L P(N(t)= k)
k=0

e D
1

k=0 k.

N-D 3
I Y 111
k=0 k!
where

N(t)= the number of failures in the time period t.

N= total number of elements composinug the system.

D= number of eiements necessary for the system to operate.
A= failure rate of eac'. operating clement.

(2.18)

10

AM 1+

0t 1 .

NL = total number of units in system

100

A figure of improvement of redundant system mean life over simplex system mean life
may be found by multiplying the vaiue determined for AM by L. A= failure rate of a single

system unit: M = system mean life.
Figure 2.5. AM Relationship for Standby Redundancy
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2.6 Reliubility of Parallel Units when the Reliability of Switching is Considered.

—

100
Y
@‘.
A
0 T < S
- \I ‘“"}/— <4
AM Q
2t Y\E\'\' ‘\»' l -
1
8
8
4
2 "
0.1
1 2 4 6 10 20 100
N
N = number o’ redundant units in a subsystem
A = fallure rate of any active subsystem
M - mean Pe «.i a subsystem

Figure 2.6 Comparison of Standby a»d Full On Redundancy

In the previous sections, we have discussed the reliability of non-repairable redundart systems,
ignoring the failure rate of any sensing or switching mechianisms. As such, the previous evaluation
and analysis procedures should be considered as providing an upper bound for system reliability.

Various ways have been suggested through which the failure rates of sensing and switching devices
can be accounted for in the analysis of redundant systems. These range from simply adding a failure
rate increment equal to the failure rate of a switching and sensing device to the failure rate of one or
more redundznt units, to analysis procedures which take into account the operational modes of the
gensing and switching device. The following is an example of the latter (for a two-unit redundant
system) which provides information on how such an analysis may be performed, and also provides
some insig..t into the complexities of the cnalysis.

Consider units A and B connected in a standdy paralle] configuration. If either A or B is functioning
and properly connected, the required system function is realized. The sensor/switch S provides the
necessary connection, disconnection function,

If A tails, S senses this failure, and if S is operating properly it switches to B. The system
composed of A,B, and S operates as follows:
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a. IfS operates properly, it checks A. If A has failed, it turns on B. S is then in « fail safe position.
The system operates until B fails.

b. S fails (and no switch possible) while A is operating. The system operates untii A fails.

c. § fails in a way that a switch te B is mandated, while A is still capable of operating. B is energized

"“and‘thc system operates until B fails.
S fails while A is still operating. It fails in such a way that A and B are unable to operate and the

system fails.
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LetP(1), P,(t), P{t), and P (t) denote the probability that the system fails at time t according to the
above events, a,b,c, and d, respectively. Then, noting that the above events are all mutually exclusive
at t, we have the probability of failure at :

*

PRV Y

PF(t)- Pa.(t) + Pb(t) + P-c(l:) + Pa(t)

At s il a "

Let the density functions of time to failure for A,B,S, be exposential and let A and B have identical
density functions.

. eega -

A f(t)= Ae_“ for A and B }
i : é

| and ; 3
g = A e for § : i

. ' |

Note that (b), () and (d) indicate three different modes of possible tailure predicated on the single i

cailure density function. In order to cope with this, define: H

P,= probability when § fails, the switch stays on A
P,= probability when § fails, the switch goes to B _
P,= probability when § fails, the switch makes A & B inoperative. o

The events described by P1, Pz, Ps are also mutually exclusive and exhaustive and: :

A

P1+P2+P3-1

We will now develop probabilistic relationships for P,(t), Py(t), P (t) ad Py(3):
Lei:

t,== the time at which § fails.
t,= the time at which A fails.
t,= the time at which B fails.

"Noting that:

‘"a
()= 1= 0 g(tg) drg
0
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= probability that S does not fail before ¢,
s
M - P(r)= 1~ £,(ty) at,
) ‘ KA

= probability that A doesn’t fail before t, wc have:

t t—-tb . q dt
‘ P ()~ ] iy P(ta) fa(ta) fﬁ(tb') by dty.
tb'o t-a-O
This follows from:
t-l:b s
/
W(t-t, )= tf P/(/ta) £,(t,) dt,
a /
. = probability that A fails before S fails/ja {0, t-t,],
I
L end: /
I t
) - - * fail
. I u(e tb)fb(tb) dtb probability that B falls
. .
b in [0.::] after the awitch

was made upon the failure of

A.
By the assumption of exponentia! failure, we have:
- ____2‘_____ M A e ARy 2.19
P(® esW M-e N € ~e ™) (2.19

Using the memoryless property of the exponential distribution, it can be seen that A Tias the same
density as before, after S fails.
Then we have:
t t-x
Pp(t)~By s/ B(E) g(t) £.() dt  dx.
x=0 t =0
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This follows from the following:

W(t-x)=» J o P(t:;) 3(t§-) dt'.
B

= probability that S fails before A falls

in [o, tn:g

and it follows:

t
Py (t) = Py x-{O W(t-x) £,(x) dx~ probahility that A fails
in [0,t]) after S fails,
Similarly we have: #
tooth a
P (t)=P, [ ;o OR(gy) g(ty) £ (%) dtg 9%
‘:b"o t!."'o

t
P ()P X ::0 P(t,) g(t) dt .
8

‘The assumption of the exponential density gives:

A
P, (t)= P, o _ oAt A (gt (2.20)
ey XA

P ()= B, -2 [1~ R G (ot ] J (2.21)

AR, o

pa(or= 2y 2 [ 1- e-(?\oﬂ)t]
A,
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From the above results the system religbility can be obtzined as follows:

R(t)= 1 Pp(e) = l—Pa(t)-Pb(t)--P c( t)-P d(t)

R { T (At _ Ot ']

R TS LN S Tt W L

A+)‘o )\+Ao
A ~(A+2 )t
«-93———9—[1-e 0’71 (2.22)
)\+)\°

IfPs = 0, P, + P2 = | (fail safe provisions built into system such that a switch/sense failure cannot
cause system vo directly fail.)

R(t) = e AC 4 A g=At (g o)y (2.23)
AO
Mo pR(E) de =242 AL (2.24)
o A A A (A H)
[¢] (o] [+
20
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Note that by (2.23) and (2.24)

_ ) ) .
a RO = w A he g Tt
Ao->0 }\om>o Ao
-e 4 lim [“g““" )| (2.25)
l°—>0
m (1 + At) e 't
im M= 11 *4do o A
A =0 A=20A A A (A 44)
(] [+ (o] [+] o]
1 . Ao
M=xe— + lim ———
N A a0 ARt N
Y N § (2.26)
A
-2
1
A

which are identical te (2.12) and (2.13), respectively, for a two-unit standby ;edundant system.
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CHAPTER 3
RELIABILITY OF REPAIRABLE SYSTEMS

The previous section was concerned with the reliability of redundant systems which were not
maintained; tha. is, the assumption was made that the redundant configuration was maximally operative at
time zero and no unit repairs were performed until the system failed. At that time, all the units were
repaired or replaced and the system put in a maximum operative coadition 2gain. This section makes the
assumption that as units of a redundant system fail, they may be repaired. In particular, we will assume
that the “ime to failure of cach unit and the time to repair of each unit follow exponential density functions.

-At
() = Ae for time to failure
gt = pe™  for time to repair
A = failure rate
| = repair rate

In the pievious section we were concerned only with two reliability figures of merit: (1) Reliability
expressed as a probability P(t) which denotes eiiher the probability of operating satisfactorily over a period
of time (0,T) or the probability that the system will be operating satisfactorily at the end of a period of time
(0,71}, 1. (2) Reliability expressed as incan time to first system failure M. Since the concept of maintained
systems forces a change in the operational scenario, the figures of merit of intcrest are somewhat modified
and angmented. The figures of merit with which we will be concemed will be as follows:

1) Keliahility caprcssed as the probability that the system will be operative at any time t, P(t).

(2) System mean time to iist fuilure M (detined in the same way as in the non-repairable case), and
system steady state mcean time to tailure M,.

(3) The expected fractional amount of timc that the system will be functional during a period of time
(0,T) - (Note that this figure of merit could be applicd to the non-repairable case, however, it is
rarcly used and it is not as meaningful as it is in the repairable case).

(4) Reliability expressed as the probability that the system will not fail during the time period (0,T).

It i;; interesting to note that while (1) and (3) are mathcmatically different, both are commonly referred
to as *‘Availability’’ (actually while the development of both measures is different and their *“time
oriented’’ forms are different, their limiting cases are identical.)

In general, the procedure which must be followed in the analysis aud evaluation of a repairable
redundant system is the definition of its relevant system states followed by an analysis of possible
transitions. This means that the system can be in any one of various states E,, E,, E, . . . .E,. For example,
a single unit has two possible states (i) operating and (2) failed. A two-unit redundant systein as in Figure
3.1 has three possible states: (1) poth units on, (2) one unit on, one unit failed, (3) both units failed.
Further, the system can pass from adjacent state to adjacent state at rates defined by the state’s failure and
repair rates. (For purposes of clarity, let us define adjacent state as that state accessible to another state by
a single repair or a single failure. For example, in the case of the two redundant units in Figure 3.1, the
s'ate of both units on is not adjacent to the state of both units failed - the state of both units on is adjacent to
the state of one unit o, one unit failed). It is impossible to pass from one state to anoti:er unless  chain
path of adjacent states is established. Given such rules, many means arc available to anzlyze redundant
repairable systems; some are more complex than others. This section will discuss several of these means.

i
|
E \
z

B A A L

3.1 Analysis of a Single Unit.

To start, we will discuss the reliability of a single unit. As will be seen later, the reliability
expressions for a single unit can serve as time saving building blocks for the definition of the
reliability expressions for complex redundant repairable systems.

Consider a urit having a failure rate A ar+ a repair rate u.

Let Py (1) denote the probability of a unit: :ing in state j at time t given it was in state i at t= 0.

0 = an operating state (an up state)
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E _ 1 = a failed state (a down statc)
o 1= }0

' I

: then:

Poo(tﬂ\t)- P (unit is operating at t+At, given

7 1t was up at ¢= Q)

. \ = P(unit doesn't fail ini(t,t+At)| unit 1s up at ¢,
} 7 given it was up at t= 0)«P (unit ig up at t, given
;; . it was up at t= 0)

+ P(a repair is completed in (t,t+at)| unit 1s down
[- at t, gilven it was up at t= 0)-P(unit is down at t,
P ' given up t= 0)
£ - (im
‘ 7. (1~AAt) Poo(c) + pat P01(t)

{

r |
) i Using:
W
i Poo(t) + Pm(c)- 1,
t Poo(t-mt)- (J.—AAt)POO(t) + udt(l- Poo(t))
t P (t+At) ~
i 00~ 00 L ey gm0
_t At 00 dt
i
’k Solving this differential equation yields:
?‘ .
t
3

00 P LTy

Using Pu(0)=1, then K=MA+;).
Then:
P 1 )= ; "‘( '\ﬂl )t ‘
oolt> H_+ A e (3.1)

X

E
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In a similar Sashion the expression for P, can be derived using P q0)=1, .2, uait

is down at t=0) then

TE = -
K=~ tho

Thu:
3.2

= - ~(h = nN
w0~ e TR

Since B, ()= 1-P) end P, (0=1-P. (¥
- | —_L ~+p¥ 3.3

- x —(Adpp .4
PO = g +ike (3.4)

s A
The relationships (3.1) ¢ (3.4) are composed of a constant texm (3:2) o1 75, and aterm
which varies with time (Ke -a+s? ), Asthe time period in time gets arbitrarily large,

we get

e”( A + 0

and: Pkt o jond Poy (€ ‘X%‘;T] (3.5)
> ..‘..L._ A g
Pl 1 E.nd P () _m-] (3.6)

These denote the limiting probability that the unit will he operating at any arbitrary
point in time distant from =0, Tt will be noted that the relationships above indicate
that as the time of interest t becures distant from t:==0, the ori' inal state of the unit is

of no consequence. The stochastic behavior of the transition probability Py(t) is
shown in Figure 3.2. Equations (3.5) and {*.6) above are defined as Availability given

by:
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= _ M . ’
v & (3.7
[
i
where: 1 = R = meantime to repair of the unit i
U )
1l =M= meantime to fullure of the unit, 1
A %
Equations (3.1) to (3.4 define the time dependent Availability of a unit, P(t). The ‘
concept of expectation indicates that: ;
T
JP(%) dt (3.8)
0
* defines the mean up or operationial time, over a period of time (0,T) reslizing A it ,
can fail, be repaired, fail again, etc. It then follows that the expected fraction of time
that the unit will be operating during the interval (0,T) is given by: ]
;T
E(F)~ T J P(t) dt (3.9)
0
From equation (3.1): : 5
1 T 1 B \ L =Mt J’
F.Oo(F)" T Of 2;£t)dt" T Of (7471; T T\‘;—ﬁ )dt %
§
i A A = (A+u)T 1
- *e 272 ¢ (3.10) ‘
A T (A1) T{4u) ‘i
4
1

which denotes the expecied fractional amount of time that the unit is on in the interval
(0,T) given that the unit is operating at t==0. Similarly from equation (3.2):

M ek b o

L s bbbk e e
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Mu o TOR?  TOW)

which denotes the expecied fractional amount of time that the unit is on in the interval (0,T) given that
the unit is down at t=0. B

Both relationships (3.10) and (3.11) are composed of a constant term X+ and terms which vary
with the time intexval in question. As the time period (0,T) gets arhitrarily large, these equations
reduce to the limiting case such that the expected fractional amount of time that the unit ;s on during a
very large period of time is:

Eoo(F)“Em(F): ‘A‘%ﬁ (3.12)

Again, it will be noted that the relationships above indicate that as the time of interest t becomes
distant from t==0, the original state of the unit is of no consequence. Note that relationship (3.12) is
identical to relationship (3.7). Hence Availability is defined as either:

(a) The expected fractional amount of time that the unit is operaring uver an arbitrarily long

period of time,

(h) The probability that the unit is operating at any point in time distant from t=0.

In cither case, then

oM
MR R

The fact that availability can have a dual definition is obvious when definition (a) is considered first_,

for if a urit can be expected to be operational P percent of the tine and is capable of numerous repairs

and failures, then it follows that at any random point in time the probability is P percent that the unit is

operating. .
Relationship (3.7) was developed using a differential equation and assumptions relating to the

distributions of repair and failura times. It need not be devcloped by that means, using such

assumptions. It may be developed quite simply and ron-parametrically as follows:
Let:

T == the interval of tiine in question
To=: the time during the interval that the unit is operating
T,= the time during tk~ interval that the unit is down
Then:
Y

=0
A T~ (definitlon (a) of avatilability)

But:
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T 'J.‘0 + Tl'

To

¥-" nuwber of failures expected in operating time '1‘0

: i
. To - '
{ : Tl- ¥ R+ tite that the unit is down over interval in questicn
: T, -
' . 0 . 1 M
, Wl Am — - -
! ’1‘0+ Toﬁ s l-". MR (3113)
M M

which is identical to (3.7)

Hence the limiting relationship for Availability is non-parametric.

‘ ' There will be situations where evaluation requires the use of one or more of the measures
’ previously discussed. in summary, the most important arc repcated and defined below:

R

) = A (e
(a) ool T e ©

The prebability a unit will be operating satisfactorily at a given point in time, given that the unit
was operating satisfactorily at t==Q.

. - B A A ~(wT
(b) Eyo®= 55 + 2 2 @
T(A4y) T(A+u)

PRI o st o dee P SR LS Lo

The expected fractional amount of time that the unit is on in the intcrval (0,T), given that the unit is
operating at t= 0.

M
(c) A= T‘E" "
! ]H'A Mf’ﬁ

The probability a unit will be operating at a random point in time, distant from t=:0, or thic expectes
fractional amount of time that the unit is on during an arbitrarily long time interval (0,T).
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3.2 The Combined Units Approach: (Full on Redundancy)

This can be considered one of the most basic approaches in existence. It starts with the definition of
Po(t) or Availability, for a single unit and treats these as basic probabilities of eurvival, as discussed in
Chapter 1 (in a relinbility block disgram). .

Take, for example, a two-unit purailel system as in Figure 1.1. Both units are identical and .
originally opcrable (on st t= 0) and both are operating simultancously. 1f one of the units fails, repairs
are begun on it and the other unit performs the function. As soon as the failed unit is repaired, it is
retumned to operation. At the first instant of time when both of the units are failed, the system has
failed.

The probability that Unit A is operating at t= P(t)

The probability that Unit B is operating at t= Py(1)

The probability that either A or B or both are operating at t is the Availability of the system P(t).

2
P(t)= Po,(t) + Bq(t) = (Py,(L))

%
!
;
|
|

] 2
- 2 Poo(t.) - Poo(t)

:

| oY) A (e | !

- T W 41329 ) 4 I A ~(utn)e i

2 [uH + utA e u+A + u+A € _ j

i

i

{

1

i

which when expanded and combined reduces to: ,1

H

, .|
| Pty y2+ 2y Aze-Z(Mu)t . 222 e-()\hi)t: (3.14) ’3
; Oy Oy Y 1
.: Note that as t gets arbitrarily large (3.14) reduces to: ‘
. 2 .
: 2A ‘
» plr)= KX 2, (3.15) )
é (A +u)2 Azaystem ‘
* |
' !
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“ which is the limiting availability for the two-unit redundant case. To show this direcily define as
N before:
The probability that unit A and unit B will be operating at 1 random point in time, distant from t= 0,
s respectively:
- -
Ayt uer and At TR

The probability that either A o: B or both are operating at the same random point in time is:

- - -t M 52
AB)’B tem AA + AB AAAB Aty + Aty (||+)\ '
i
: 1
whicl reduces to:
2 ' i
w it My (3.16) k
system (A+u) 2 ]
3
5 . &
5 This is identical to (3.19). ; ]
,_ In general, this approach is one of the simplest to use when an evaluation of either the limiting or | ’
the time dependent availability of a system or subsystem is required (mean time to first failure or ,
Probabhility of no system failure over time t cannot be evaluated using this approach). b
The following formula may be utilized to determine the system or subsystem redundancy and

general philosophy of operation as discussed in the beginning of this section.
Let X = time dependent or limiting availability of any unit.

ekt B

e o ¢ a—

L Ni
X N
System Avallability= 1 % (%

y x) -xpN (3.17)
i=1 =D, J

| a2 e Ent A 433 bt o

= number of subsystems in serics
i=  defines the ith subsystem
= minimum number of working units required for the ith subsystem to operate
. N,= total number of pasallel units comprising the ith subsystem.

' 3.3 The Markovian Approach (For Full on Redundancy)
’ Of s1l the approaches to the analysis of repairable redundant configurations, the Markovian is the
; most powerful. It is particularly appropriate to the analysis of redundant systems and through its
3 application to such characteristics as:
‘ . Availability (time dependent and limiting)
. Mean Time between system failure
. Reliability (we saw earlier a simple Marhovion approach analysis for a non-repairabie system).

|
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i
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A redundant repairable system composed of N units has 24 potential states. Each time a different
combination of units is failed and operating a new state is defined. This means for every single repair
action completed, the system enters a new state. Likewise, for each failure which occurs, the system
enters a new state. The repairs and failures which occur canse the transitions from one state to the :
next. The rates of transition (the failure rates, and repair rates) from one state to the next are )
detcrmined by the failure rate and repair rate characteristics of the current state and also the P
probability of more than one transition occurring simultaneously is zero. H

In order to apply the procedure, all possible system states must be identified and prokabilistic '
equations developed describing such states. The easiest way to define and write the probabilistic
relations of the states is to draw a state space diagran or a truth table. The diagram shows vieually the
evolution of different system states possible and the means of transition, if any, between states, either
by failure or repair. Because small increments of time are considered in the analysis, the probability of
a double transition is considered to be zero. The truth table (Figure 3.2) shows the results of the space
diagram in tabuler forim. Examples of both will follow.

‘The definition of:

(A) Availability (time dependent, and the limiting case) 1
(B) Reliability and Mean time to system failure

require the utilization of slightly different constraints and formulation of slightly different sets of state
equations. The primary difference lies in the fact that if we wish to determine the probability that at
any time the system is in any state K (necessary to determine Availability) we must allow for a
transition from a system failed state to an operating state. In the event we wish to determine the
reliability (the probability of no sys*em failure in an interval (0,T)) that i§, the probability that the
system remains in the set of non failed states during the interval (0,T),

R(t)= Z Rj (t) i = Set of all non falled
f : states,

e A i o Wit e e aSitn

or the mean time to failure of the system, we must structurc our statc cquations such that there is no
transition from s failed state.

The space diagram for a two-unit system (both units operating simultaneously, enly one of which is
required for systems operation) is shown in figure 3.1. As can be scen, the possible states are:

a) Unit A and Unit B are both operating (State 2) . 1

b) One unit is in a failed state (repairs are being made) and the other is successfully operating
(State 1)

c) Both units are failed (State 0)

The truth table can be tabulated as in Figure 3.2. o
Values of the A's and u’s define transition probabilitics between adjacent states. The arrows indicate
which direction the transitions take.

N N :
e \‘e\ prd 4 o |

«
272 Availability Measures So 2777
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State Space Diagram For Rcilability And Mean Time Yo Failure Measures
Figure 3.1
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g STATE A B SYSTEM

' 2 1 1 Operating
1 0 1 Operating
1 1 0 Operating
0 0 0 Failed

Truth Table For A Redundant System
Figure 3.2

3.3.1 Markovian Aigpmach for Avaiﬁl_@ility Measures (Time Depcnd;_nt and Limiting Case)

(Full on Redundancy)
The following set of state equations may be developed

Pz(t+At.)-= P (unit A and B are both operating at t+At)
= P (neither A nor B fail in (t,t+At) | both units
i are operating at t)°*P(both un‘ts are operating at t)
| + P (the repair of A(B) is completed in (t,t+at) |
B(A) 1s operating &t t)-P(B(A) 1s operating at t)

= (]—'ZAAt) Pz(t) I ]JAt P](t) (3.].8)

Similarly, wc have:

Poerat)= 228t Po(t) + [1- ww)ar) pi(e) + 2uae Bo(0)  (3.19)

Po(tHALd=AAt ». (£) + [L.zuAt ;l By (t) (3.20)
' 31
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where: 3
i

Po(t) + Py(£) + Py(c)= 1 (3.21) ;

Expanding and rearranging the siate equations as follows:

P, (trat) - P, (%)
2 2 . SE2(E) L p (v)~ 2P, (t3 (3.22)

Pl(t+At)- Pl(t) ) dPl(t)

- - (Mu)Pl(t)
At dt

+ zxpz(t) + 2uP0(t) (3.23)

PO(L+At) - Po(t) 3 dPo(t)

- u’l(r.) - ?.uPO(t)
' At de :

(3.24)

Taking Laplace transforms and realizing that:
P, (0)~ 1, Pl(n)- o, PO(O)- ]

(initial conditions if we sssume ail units operative at t= 0).

.8 Pz(a)-— 1= uP]‘(s) - 2AP213)
8 Pl(a)- ~(Atu) Pl(a) + 2) Pz(s) + ZuPo(s)

8 PO(B)— API(B) - 2u PO(B)
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Solution of these simultaneous equations and finding the inverse transformation (as shown in
Appendix B) results in:

2 2 ~2(xtu)t 2 ~(Au)t
P(t)= 1~ B (t)= BAZM AL 2 (3.25)
(A+u) (A+y) (A+u)
and taking the limiting case (letiing t —» )
2 (3.26)
P(t) » e LX2AM '
(J\+u)Z ‘

Note that results (3.25) and (3.26) are identical to results (3.14) and (3.15) and (3.16) which came
about as a consecuence of an entirely different approach to the probiem (an approach which wss
considerably lcss involved than the classical Markovian approac’ discussed previously).

3,3.2 Markovian Approach for Reliability Mcasures and Mean Time to System Failure
(Full on. qp_qr_ation)

The following set of state equations may be developed (derivation similar to previous, except

natice that snce a unit reaches a failed state Py(?) it is rot allowed to pass to a working staie
P,(1).

P2(t+At:)- P2(t) (1-2A41) + Pl(t)uAt (3.27)

Pl(r-mt)- L’Z(t) 2)At + Pl(t) (- +u)Aat) (3.28)

Po(t+At)' Pl(t)lAt + Po(t) (3.29)

Po(t) 4 P (e) + Py(t)= 1 (3.30)
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As before manipulation of the state equations results in the differential equations:

de, (t)
2 .. 2)‘P2(t) + upl(t) (3.31)
dt
dP, (t)
Tl 2 Pz(t) - (A+u)P1(t:) ‘ (3.32)
dPo(r.)
T APl(t) (3,33)

Taking Laplace transforms and realizing that:
P,(O) = i, P(0) = 0, p.o(o) =0

(initial conditions if we assume all units operational at t= 0) we obtain:

1= (8421) P2€8) - uPl(s) (3.34)
0= 211‘2(9) - (Atuts) Pl(s) {3.35)
= s‘PO(s) - APl(a) (3.36) E
(in a manner similar to Appendix B). The same argument of the previous section results in: :
. :Zt L ee;lt: !
27 !
O R — i
817 %2 f
6 6o~ - £3\+y) i.().2+6u}\+u2)l/z £3.37) i
1’2 2 j
,‘
as before: X
M SOR(E) dt ]
0
i :.11
o SAtp ]
E N\ 22 (3. 38)
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(assuming the system at t= 0 ha-l both units in satisfactory operation). Note that if u= 0 (that
means non-repairable system)

=21
M %)‘ (3.39)

which is exactly the value which would have resulted from relationship (2.6) for 2 units in a
non-repairable system, and if u= 0 relationship (3.37) reduces to:

R(t)m 20 AE_g72AE (3.40)

which is exactly the value which would have resulted from relationship (2.7) for 2 units in
a non-repairable system.

3.4 The Markovian Approach For Stand-by Redundancy, Markovian Approach for Availability Mrasures

(Time Dependent and Limiting Case) (System in Stand-by Conditions)

(1)
2
3

—i —rn 2 - ""‘WWW
aean et e it e A a0 s e Dol R San Tl oo ot S gl "y
,

e+ e e g

Y Y g

In this situation our intent is to setup the probability state equations relevant to the case where the
redundant configuiation has one unit in actual operation and the ouier uniis are in stand-by (such units
are not energized) and have failure rates = C. The unit in operation operates until it faiis, at which
time one of the stand-by units begins operation, and repairs are begun on the failed unit. When the
failed unit has been repaired, it becomes a stand-by unit. When a failure occurs when no repaired (or
good) stand-by units are available, the system fails.

As before, an excinpie is presented as to how such a problem is solved. We take again a two-unit
redundant system and define its respective states.

Unit A and Unit B, both are operable - one is operating (State 2)
One unit is in a failed state (repairs are being made) and the other is operable (State 1)
Both A and B are in a failed state (State 0). Then we have the following state equations:

Pz(t-m)m Pz(t)(l—AAt) + Pl(t)uAt (3.41)

Pl(t+At)= Pz(t;)AAt + Pl(r.) (L-(A+p)At)

+ Po(t)ZuAt (3.42)

PO(,t+At)a Plct) MMt + PO(r.) (1-2uat) (3.43)
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Expanding and resrranging the equations:
e, (t)
dr,(t) -
3" ~(A+n) Py (t) + AP, (%) + Zu!’o(t)
dl'o(t)
wm—— = AP, (t) - 2uP,(t)
it ,
Taking Laplace transforms and solving for:
P(t)= 1~ Po(t)
. 2 2 B‘zt 2 glt
A Ae e
P(t)= - + -
(€) LIPS 82(;2""81) -1(3112) (3.44)
- N .
22+ 3 Yu+ 4
O (¢ u; £ U+ A
Note as t geis arbitrarily large:
2u2 + 2uA
P(t)= A~ 7 (3.45)

207+ A% 2ux

36

ool ag

»

A i . ABCALR e AL A+ r Ao A i s Aot L Ml - AL AR 3T e sk MRES o ....‘



y B
e e i - wy ~orgne TR TR sallabbidn o cacia L Bt/ Al L e X s g e il O L aab ALY Lll)

[V, .. [ R LY. ]

3.4.1 Markovian Approach for Reliability and Mean Time to Failure Measures
(System in Stand-by operation)

Assume a redundant stand-by configuration and operating philosophy ds described in the
previous section. Again, the primary objective is to develop the probability state equations
representing the system, its operational philosophy and the measures to be evaluated.

As before an example is presented as to how such a problem is solved. We take again a
two-unit system and define its possible states:

¢)) One unit is operating and has a failure rate= A, a cecond unit is capable of
operation but is not energized and has a failure rate== 0. (State 2) |
) One unit is in a failed state (repairs are being made) and the other is successfully i
operating (State 1)
3) Both units are failed (incapabie of operation due to malfunction) (State 0).

Note as previously stated, that in order to evaluate Reliability or Mean Time to Failure, the

state equations can permit no transition from a failed state. As before, state equations are
developed.

P2(t+At)~ Pz(t) (L-aat) + Pl(t) ALt (3.46)

P) (e+aE)= P, (£) AL + P, (t) [1- (A+u)Ar] (3.47)

PO (t+AL)= Pl(t))\At + Po(t) (3.48)

" : P e PRI e <t~ PP
[ VISP U VUSSR SPUUIYT RSP VY 43 T D U=y SO VY by

After solving the equations finding the inverse transformation and performing manipulation
r 2 t r
R(t)=

- (3.49)

where:

e 22D T SO 20 62
1*°2 .
2
Again, since r,, r, < 0 and r, > 1,, we have:
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i of R(t)dtm [ == — dt
0 T =¥,
4 r,t r ryt
1 o =2 2 b ¢
- - J a de = - e dt
T1 ¥

" o -‘.... .+ " =

r22r1~-?) 11ir1 rz)
o rl+l'2

T1¥2

22+

- —;—,_-"— (3.50)

Note if the system is non-repairable, = 0, then

M= (3.51)

i

which is identical to the result of Equation (2.14) for a two unit non-repairable system.

By this tim. it is clear that the Markovian approach is capable of evaluating all of the
reliability mex=sures requived. However, it is also clear that this appruach is rather cambersome
and time-consuming, esp-cially when more than two units are redundant or when the units have
dift:rent values of A and ;1 . Note also th  the Markovian approaches discussed are designed to
evaluate specific configurations/operatiosial scenerios, aud not to provide closed form
relationships, relating failure and repair rates of units, number of units in a sudbsystem and
awnber of subsystems to system reliability. The next two sections provide discussions of two
apprcaches /nich are capusble of making the analysis of repairable subsystems less
cum crson-  and time-consuming than those discussed and have the additional characteristic of
being i+ clo 2d fonu or algerithmic form such that a singie equation, or procedurc is capable of
eviluating aay number of units in par: el.

3.5 State Fxpectation/T, rg_n§i_t.iori Model (for Reliability and Mean time to failure)

3.5.1 Full on redundancy

While the other approacies ¢ - ussed to evaluate the reliability of redundant systems were
classical, the following must b considered unique. It uses as a foundation the basics of a
Markoviar process but treats and combines these into an expectation model.

Given a system comprised of L operating redundant identical units (cach with identical
values of A and ., in addition all failures and repairs of units take on an exporential density as
defined previously.) Assume that D units (D<L) as a minimum must be operating in order for
the systena to function. The system then has a nuieber of pssible operating states.
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Defined as

[72]
-
&

0 L units operating
1 L-1 units operating Satisfactory operuting states.
2 L-2 units operating
N D unirs operating
N +1 D-1 umts operating - a system failure

As indicated previously transitions can take place only between adjacent staies. That is,
given the system is in state of j,(j=>0), the system can pext yo to either state (j + 1) or (j - 1), no
other. This follows from the flow chart,

N 7N

STATE STATE STATFE STATE

0 1 2 M

Naturally, for example, when 2 of L units are failed the next rransition must be cither to 1 of L
units failed (indicating a repair) or 3 of I units failed (indicating a failure).

It is also clear that immediately before the system fails (reaches state (N + 1)) the system
must be in state (N).

Each state has associated with it unique failure rate A ;, and repair 1ate u |, computed as:

lj" (L~ JsN [N 1s the state number associated
vith D units operating]
u1= Ju (assumes that as scon as 4

unit falls repair is begun).
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Since we are dealing with exponential density functions for repair and failure:
Expected time in state j before transition

1
« E(3)» ——— (3.52)
Xj+uj

Probability of going to state (j + 1) on the next transition, given you are in state j at the present
time. (Thix, of course, signifies an additional failure)

A

P{i+1/1)" ’x‘}:ﬁd (3.53)

Probability of going to state (j-1) on the next transition, given you arc in state j. (This of
course signifies a repair)

H
= P(j~1/1)= fj'i'i; (3.54)

P(J-1/4) + P(3+1/)= 1

Given the characteristics above and using expectation, the expected length of time to go from
state j to state (j+1),EG+1/j), can b formnulated.

RAH/D= PQHL/Y) - B 2Q-1/9) [ue) + E(3/3-D
+ E(3+1/3))

Rearranging and grouping terms

PU+L/Y) - ECH) + PO-1/) [ECD) + E(/3-1]]

E(J+L/4)=
1~-P(3-1/1)
Substituting (3.52) - (3.54) into the above:
31
I
' ; 321 o x¥ .55
Y e e L = (3.55)
3 3 J i K=0 T hn
n=K
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It is obvious that in order to fail (assnming the units of the system were al! operating at t= 0) !
the system must gracefully degrade; that is, from state 1 it must eventuglly go to statc 2, from :
state 2 it must eventually go to state 3, etc., and the average time for such graceful degradation )
from state j to (j+ 1) (taking into account transitions from j to (j-1)) is accounted for by (3.55) i

Therefore: :

e i i il

N i
L E(J+1/P~ M (3.56) ‘
j=0

that is, the sum of the expected times to transition from state j to (j+ 1), from (j+1) to G+2),
etc., is the expected time to go from state 0 to state (N+-1), which is the mean time to system
failure. Repeated use of (3.55) in (3.56) leads to:

N
M= I E(3+1/3) :
i=0 V. X
i._: - ¥ T+ T ): (T._..__.’ (3.53) :
X 30 %3 3=l EK=0 A , f
$
: n=K
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For example, take a two-unit redundant system as before (each unit having identizal failure and
repair rates A, and u) and apply (3.57). The resuit is:

e 2R (3.58)

222

P QU
SN S

the same result as from (3.38) which evaluated the two unit system using a conventional
Markovian Process.

As can be observed, this procedure is significantly simpler to apply t.an any of the others
discussed and less time-consuming (due solely to the fact that application of {3.57) is all that is
required). Its drawbacks arc (1) while the mean time to failure of the system may be derived, its
relinbility expressed as the Probability of nio system failure in time t cannot be determined; and
(2) it is capable of handling only redundant systems comprised of units with identical failure
and repair rates.
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3.5.2 Stand-by Redundancy.

The cencepts of the previous section can be used to develep a relationship for mean time to
failure for a system employing stand-by redundancy.

Given a system comprised of L redundant, identical units (cach with identical valuss of A,
end p. In addition, all faiiure and repairs of units take on an exponential densi.y as defined
previously). Assume that D units (D<L) must operate at all times in order fo~ the system to
operate. All other units are rot energized and have A = 0. They remaii. energized until a failure
occurs and only then is one energized. A repair action is immediately started on the failed unit.
The system fails when one of the D operating units fails and no energized unit is available 1o
take its place (all (L-D) units under repair when a failure ocrurs). The system has a number of
possible states:

State Defined as

0 D Units operating, (L-D) energized, O under repair
1 D Units operating, (L-D-1) energized, 1 under repair
2 D Units operating, (L-D-2) energized, 2 under repair
N D Units operating, 0 » (L-D) under repair

N+1 D-1 Urits operating ~ Failure

Again, transition can take place only among edjacen: states. That is, given the system is in
state j £j>0), the system can next go to either state (j+ 1) or (j-1), v others. (See flowchart of
last section).

Naturally, for example, when 2 of L units are under;oing repair (are failed) the next
tramsition must be either to 1 of L units undergoing repairs (one unit mpaitzd) or 3 of L units
undergoing repairs (an other operating unit faited).

It is also ciear that immediately before the sy.tem jails (reaches state (N+1) ) the system
must be in state (N).

Each state (j) has associated with it a failure rate of A, a.1d a repair rate of .

For stand-by redundancy

A= DA J&N
= jph (assumes that as soon as a unit fails, repairs arc begun).

Since we are dealing with exponentiai density functions for repeirs ard failure:
Expected time in state j before transitio i

1

- E(J)"DHu

]

Probability of going to state (j-+1) on the next transition, g.ven you are in state j at the
present time. (Siguifies an additional failure)

= P(I+L/ 90 5;‘3;}—;;
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"N . Probability of goirg o state (j-1) on the next transition, given you are in state j (signifies a : {
. ‘% repair) 3
g
. .
¥ ; ; ;
= P(§-1/4)= oo, {
E ] U= ke : !
§ (3.61) .
- ] 4
1 ; P(3-1/1) + F(§+1/§)= 1 ]
£ :
I
f l : The expected length of time to go from state j to state (j+ 1), E(j+1/j), is formuiated: i !
i :
T :
| { i
1 ‘ E(3+1/4)= PU+1/9) - EC3) + P(3-1/9) [EC(S) + B(3/1-1) f
‘ P
T + E(3+1/1) -
T =
E‘ b o
Koo Substituting (3.59) - (3.61) into the above, regrouping and simplifying. }
! ! P
o L W
EGHU/D= 55+ 5L BG1/3-1) (3.62) .
g .
P
;; 1t is vbvious that in order to fail (assuming the units of the system would all be in an operable . 1
E condition at t= ) the system nwst gradually degrade; that is, from say state 1 mast eventually D
; g0 0 stte 2, before going to state 3. And the average time for such a degradation from state j to i
state (j-+1) (taking into account \ransitions from i to (j-1) ) is acconnted for by (3.62). o
Therefore: P
( N !
i L E(J+1/§)= M (3.63) i
{: j-o ‘
*
. that is, the sum of the expected times to go from state j to j+ 1, from (j+ 1) to (j+2) etc. is the 1
’ expected time to go from state 0 to state (N+1), the mean time to failure of the system.

Repeated use of (3.62) in (3.63) leads to:

e
S

Lt
AT P TR Wi -
ol
asan
———

N N l -
=X EG+UD=2 e b A 2 e ' j
: M j>-1. G+ Y Y &, DA (3.64) i
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For cxample, take a two-unit redundant system in standby (sach unit haviog identical failure
and repair rates A,u) and appiy £3.64). The result ir:

20+
Mo £ 55 (3.65)
A
the same as the result from (3.50) which directly evaluated the two usit standby system using a
conventional Markovian Process.

As can be seen, this procedure. like the preceding, has advaniages of simplicity and time
over the classical method to evaluate the mean time to failure of a standby system. Its
drawbacks are (1) while the mean time to failure of the system may be derived, its reliability
expressed as the probability that the system will operate over an interval of fime (0,T) with no
failure cannot be determined; nd (?) it is capable pf handling only redut-lant systems
comprised of units with ides:ical frilure and repair rates.

3.6 System Failure Rate Approach (For Full on Operaticns)

In the previous section, concepts pertaining to transition rates (failure and repair rates) between
adjecent states were used as the foundaticn on which an evaluation technique was based. In this
section we will discuss an cvaluation techsiique based on the concept of System Failure Rate
associated with each system state
Let us first define:

(1) System State - The description of the sysiems operating condition in terms of how many units
arc operating and how many arc in a failed state.

The following is a Jist of the possible states for a parallel systemi comprised of L units.

States Description of State

0 L  Units operating, O failed
1 (L-1) Units operating, 1 failed
2 (L-2) Units operating, 2 failed
3 (L-3) Units operating, 3 failed
R (L.-N) Units opeming, N failed

N+1  (L-N-1) Units operating, (N-+1) failed .

We bear in mind that transitions can take place only between adjacent states (more than one failurc
atone time has a probability = 0; more than one repair u: ~ne time has a probability = 1); a failure and
a repair manifesting themselves simultancously has a probabiity= 0). That is the system which if in
state j (j>>0) can go cither to state (j+1) or state (j-1). Further, assaraing that the systein is in state 0,
att= 0, in order for the system to fail (reach a failed state, say (N+-1)) it must a seme time go fror
state O to state 1, from state } to state 2, from state 2 to state 3, etc, eic.

Fuither, if one defines:

E(j+ 1/5), the expected tisne to go from state j to state (§+1), thew:
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L E(j+1/3)~ M= Msan time to system fallure. ‘
3=0

P U

(2) Svatem Substate - A Subgstate of a system state. Many system states as defined above (X units
operating, Y failed) may occur in a different number of ways (for exampie, take a two-unit redundant A
system comprised of Unit A and Unit B. Unit A may be operating and Unit B failed, or Unii B may be b
operating and Unit A failed. Both are different substates belonging to the systemi state, one unit
operating;, cne unit failed) each way in which the system state might occur is called a substate.

(3) Border Stsic - A substate of a sysiem state where the next unit failure will cause a system failure,

Examples;

(nH P A three-unit redundant system, a minimuam of any Z units must be operating in order for the ;
system to opetate. In this casc, the border states would be any 2 units operating, one unit ;
failed. Three border states would result.

(93] A four-unit redundant system, a minimum of one unit must be opersting in order for the
system to operate. In this case a border state would be any ¢ne wint operating, 3 units failed.
Four border states would result. '

- T L
(4) Limiting Availability F N~ Me R

- . « L T P T . PP e e
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Defined and desived eariicr as a non-parametric measure which indicates: the proportion of time that a
unit is operating (or up), given its average failure and repair rates, A and p; or the probability that a unitis
operating at a random point in time, given its average failure and repair rates A and p.

In a system comprised of L parallel units application of the Limiting Availability figure of merit can '
determine the proportion of the time that the system is operating or the proportion of time that the
system is in a given state.
Example: A three-unit Redundant System made up of units A, B, and C, (A minimwin of one unit is _
required for satisfactery operation). ,
Let A, indicate Unit A is on ‘
A, indicate Unit B is ¥niled :
B, indicate Unit B i, On g
B, indicate Unit B is Failed :
C, indicate TInit C is On
G, indicate Unit C is Failed
The system can be in any one of the following states:
3 AB,C, f
! AdB(C; i
~ AdBrC, :
: AB,C, BRorder State
ABG,
A:B.Ce Boider State
ARG, Border State
A.B.C, Failed State
Let: e
A,. A, A_ represent the Availability of A, B and-C respectively.
Let:
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(1-A)), (1-Ay), (1-A¢) represent the Unavailability of A, B & C (This represents the proportion.
cf time that A, B, or C is in a failed state (undergoing repair), or thc probability that A, BorCisina
failed state (nndergoing repair}, at a random point in time).

Using the fundamentais of prcbability, we can now model each state and determine the proportion
of time that a system is in any particular state. Taking the last example:

State ~Prop§ttion of time Iin state Border state
3
N B S Ay Ak - R No
Ay By Uy  AAQ-AY) ~ - No
Ay By Cp A U-ADA, - A No
Ay By Cp A A (1-A) - A2 Yes
Bo C 2

o G-A AL, - (15‘5\3—- No
o Cp U~ A (1-a)) -(u—,;‘;—ﬁL Yes
(1-A,) (1-Ap)A, ~ '(T#It%—" Yes
By G (oA U-A)(-A) = m%-_;—«-— Failed

TOTAL 1 1

N
on

The primary concept to grasp in the application of this evaluation technique is the fact that the system has a
fatlure rate equal to zero while it is in every state except a Bordey State; that is, the system can fail directly
only from a Border State; it can not fail directly from any other state. The system failure rate A,, in a
Border State is the sum of the failure rates of the operating units in that Border State,

D
A= 3 li
B e

Ap= failure rate of a Border Stute
A= failure rate of the ith operating unit (non failed unit) in the Border State.
D= Mini*-um number of units required for successful system operation.

If one were to associate with each Border State, the Product of the Proportion of time in that siate (A,,) and
the Sum of the Failure rates of the operating units in that state (A,) and an arbitrarily long system
operational period T the (Note 1" includes the time that the syste 1 is operating satisfactorily and the time
the system is down for repair) term:
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: would represent the expected number of failures caticipated from Border stete i over an arbitrarily
i long period of time T.

; If one were to sum this result for all Border States, K, making up system state N (recalling system
‘ state N+ 1 is a failed state).

: T lz( A = the number of friiures expected in System
} $ 1ABi Ri operational time T from Border Siates. (3.66)
: (Recall failures can occur orly from Border States, therefore all system failures occur from Border
t States).
) If one were to sum the substate availabilities (A} of all the states in which the system satisfaciorily
‘ operates (including Border States} and multiply that sum by the same arbitrarily long period of time T
| |
1
! N Z [
Tjio i-'lAj_l- the total time that the system is (3.67)
‘i operating satisfactorily. li
:
} i
. A= 'l;h:: availability of substate i associated with system state j. 1
. Z, = Number of substates associated with system state j. i
3
- The ratio of (3.66) to (3.67) is: }
_number of failures expected  or @
Total operating time i
N2 i
bX EJ i
=07 1=1 {4 =  Average time to system failure ]
K (3.68) !
LA i

B AB.t measured 3teady state = M

i=1 5

This measures the actual perceived average time to system failurc over the life use of the system. It
is important to note that since we are using state N as a minimun operating state, the model indicates
that as xo0n as the systen fails, it enters state (N+ 1). The system is then operational again as soon as

repair puts it into State N. Each cycle of operation-failure for the system (atter the first sysiem failure)
then starts in State N and ends in State (N+1).

The average time to failure (M,) is in reality, the mean time t¢ go from state N to state (N+1) or
E(N+1/N).

Theeefore, (3.68) may be rewritten as:

il * . M ki o St 5. b b e AR Abn Bt s
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N oz
g ¢ A
j“oxf"l = EQHL/E)= M (3.69)
goy Bt 81

Taking a two-unit recundant system as an exampie (A, and g of betls units identical) and spplying
(3.69)

222y

(tA) < - P2 A
224 224
(u+A)

E(N1/N)= R(2/1)= (3.76)

witich is identical to the result which would occur when equation (3.55) of the previous section is
spplied to evaluate F(N+1/N).

For the next step, define a new criteria for system failure follows: if a minimum of D operating
units out of L were originally necessary for system operation, assume now that a minimum of (D+1)
operating units out of L is required for system operation. Determine new values of A,,, Ay, as before
and spply equation (3.69) once more meking N==(N-1). By changing the failurc criteria from D to
(D+1) the application of (3.69) reslly evaluutes the expected time to go from state (N-1) to state N

E(N/N-1)

Repetition cf the above a number of times until the boundary state shifts fr.m N to 1 (see state chart at
beginning of aection) results in the following summation:

N .
£ E(J+L/j)= M= Mean time to failure for the
j=0
system assuming all units
were operable at t= 0.
M Z,
_ T i oa .
or: : JmN+1 1=l 3
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T

F For example, take a two-unit system with identical values of A and & with operational scenario as
before:

M= E(N+1/N) + E(N/N-1)= E(2/1) + E(1/0)
From (3.70), E (/1) =

u+A2
2
u2
ptA) 2 1
21121 2
a2

Y

E(1/0)= (3.72)

L TR

Mo EF22 L w32

w3
n? B 2

which is identical to (3.58) which was derived using the expectation/transition approach.
In the event that all units have identical values of u and A (3.6%) reduces to:

N
L
iﬁo(n+i) Ag, (N-1)

) Ag Ap

A = Availability of any substate in state j

A= ALG+1), A,, (i+2), ........ As

A= Availability of any border state (all border states have same availability if all units identical).
In the event that all units have identical values of A and g (3.71) reduces to:

Nev
E o Lo orvat) Ao Gievet) (5.74)
| 0 ) B ) o)
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A;.,= Availability of any substate in system state (N-v)

D+v
A - 3 A
(R-v)
1=]

A, = failure rate of the ith operating unit in state (N~ v).
For the two-unit reduadant example previously described:

H-.Z.Kty.
8 2
2

“.J:E"_:ii
2,2
A

which of course duplicates the results of (3.72)

As can be seen, this procedure like the preceding, has the advantages of simplification and time
over the classical methods to evaluate the mean time to failure of a full-on system. It has one
advantage over the previcus expectation transition, combination method in that it is capable of
handling systems of parallel units of different values of A and u. Its shurtcoming is that the reliability
of the system expressed as the probability that the system will operate over an interval of time (0,T)
with no failure, cannot be determined.

3.7 Systems Periodically Mairtained

In previous sections, we have considered systems which were not mainteined, and systems which
were maintained immediately after failure. In this section, we will consider redundant systems which
are only periodically maintained (a system is placed in operation, then left unattended; every T hours a
mainenance team visits the system and repairs all unit failures). Let

fft) = density function of failure for the redundant system.
Then T
RT)=1- f ] f(t)dt = probability that the system will be on at the end of T.

If the system is still operating at T, then the operating time for system is T. If the system fails att in
(0,T), then the operating time for system is t. Therefore, the average uninterrupted operating time of a
system in (0,T), M, is given by

T
M, = TR(T) + J tf(t)dt
T 0

' T
= TR(T) + £(1-R(D)) |7 - J (1-R(t))at
0

T
- I R(t)dt

0
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Itis possible for & system to fail before the first cycle (0,T) is complete or it is possible that the system
will not fail until the Nth cycle is complete. Therefore, if we had a large number of suck systems (X)
in the field and intended to so maintain these over a long period:

R(T) = proportion of systems surviving the first cycle with no failure

R(T)? = proportion of systems surviving 2 cycles with no failure

R(T)’ = proportion of systems surviving 3 cyzles with no failure

T T e T T R

, R(TY Proportion of system surviving the first N cycles with no failure. Thercfore, of the original X
] sysiems

Cycle No.

1 X systems would operate uninterruptably for an average of M hours each before failure
2 R(T)X systems would operate uninteruptably for an additional M; hours.
1 3 R(T)’X systcms would operate unintcrruptably for an additional M; hours,

Lt

N R(DY"' X systems would operate uninterruptably for an additional M, hours.
And the average uninterrupted opeiating time to first failure per system is

——— Y

N-1

XM, +

CR) [Reft x v, -
5 = - < = “r[:l + [.R('Q]
v =]
i
;
' But
f N-1
: 18
; 1+ z ER(Tj = a progression of the form
) =1 2 n
} a, ar, ar’....ar
|
;
]
3

with sum;

R(T)IN .. 1
Sy~ [ﬁﬁr."f““
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Since:

N 1
CR(T] <1 SN -+ m) as N gets arbitrarily

large. Hence:
Average uninterrupted operating time to first failure M,

3 .
‘ J r(r)de
E M ™ - 0

3 v Y ¢ ) R Y ()

The anelysis of redundant systems is almost always concerned with the impact of that decision on
reliability or mean time to failure. It is seldom related to impact on maintainability and mean time to
repair R and total maintenance hours required (which impacts support cost). Yet, redundancy impacts
these areas critically. The following sections quantitatively describe such eftects.

3.8.1 Redundancy impact on Mean Time to Repair (Full on Redundancy)
Take a systenn composed of L units, D of which have 1o cperate in oxder for the system to
function satisfactorily. Recalling the notation of the last section define those states in which the
system is considered failed. This would be states:

N4 1 When (D-1) units are operating, (1.-D-+1) under repair
N + 2 When (D-2) units are operating, (1.-D+2) under repair

L When O units arc operating, 1. under repair.
Define the substates associated with cach state (Z;) and the availability of cach substate A,
(where A,= the availability of the ith substatc associated with each system state j) Through
knowledge of the availability components of such states and substates, we will form the ratio:

T S T T I Y I = Y T [ R T — T —

Expected time the system is in a failed state
[ Expected number of transitions from an operational state to a failed state (Failures)

= the expected time that the (3.75)
system is in failed state

From (3.67), the number of failures expected in 1:

T T T Y ST T, TR e
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L 2
e & 2‘1 Aji = average system down time (3.76)
! J=N+1 1s1
> K
. L4 A
E - .1_1A31 Bi
. 1
. when all units have identical values of A, and u the average system down time
t, ;
4 .
b _ P L
N - T A
" i_{:1‘1)--1) 8, (N+1)
L
(D) AB )‘B
i ; ‘ For example, for a 2 unit parallel systemn with equal values of A and u, the average system
} ; down tiine
SR
| | . 2
E | | = (]J"'A) ? L] 1 - g
f 23 2 2y 2
¢ (u+2) 2
F -3:8.2 Redundancy cffect on Total Maintenance Time (Full on Redundancy)
E Let:
(1-A )= Proportion of time unit is under repair (assumes repair starts as soon as unit fails).
- T(1-A )= Expected time unit is under repair (over a long time interval 0,T).
Given L redundant units
L
T % (1--Ai) = Total malntenance time expended (3.77)
g i=1 !
L’ on uystem ‘
b :
‘ !
f If all units have identical values of A, and u (3.77)reduces to |
- , i
§ !
; % |
\ f
% : ALk = Total malntenance time expended (3.78) }
> ; i+ A :
b 3 on system :
t ‘ ]
; g
i
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Comparing the gsbove with a simplex system with total maintenance time expenditure of:
AT
p+A

It is clear that with every unit added to increase reliability maintenance time increases proportionately.

3.9 Efficient leveis of Redundancy

The question arises as to what degroe redundancy should be applied.

Shouid it better be applied at the system level, subsystem level or the unit level? There is, of
course, no gencral answer to this question. Much depends on the nature of the application at hend. In |
some instances, due to practicality, cost or the engineering nature of the system itself, only one course : }
of action is possible. In the event, however, that no constraints are evident on the level of redundancy,
which level should be chosen?

Assume that the system in question is denoted as A in Figure 3.3. A may be partitioned at will into
(L) modules, all having identical failure rates A, and the total failure rate of A=LA. Itis necessary to
improve the reliability of A and the only availabic means to realize this improvement is through the
application of redundancy. How does the level of redundancy chosen affect reliability?

Let us assume that due to reasons of economy only one redundant unit can be considered. Shall we

(1) make system A redundant with System B (Its redundant entity)?

(2) break up System A into L modules? break up system B into L modules and make each module
of B redundant te its corresponding A module? And, if we choose the latter, what is the sensitivity of
reliability to the partitioning scheme chosen?

Using (2.3) the mean time to first failure (M) of the systein described equal to !

PP PR

L 2K
K+ H
RS DL o

Re1 K! (LK) ! §=

B U SV W S

1
M A

i

Since in this case N= 2

whete: L= number of modules the system can be broken Gown to
A= failure rate of each module :
A,=LA= failure rate of the single sysicm 1

-km-ﬁ-& mean time between failure of the single system.

T S TN T T TR e v e e ‘mewmm AT AT EWTEICT v
, .

)

i

b

i The above equation may be written as: ‘

E :

L Lk R A f
Mo L (1) e X 3 ;

0 K=l KI(L~K}! Sm=1 '
!
{

Treating L in the above as a variabic and A, as a constant, M can be evaluated as a function of the
degree of partitioning practiced (the value of ).

Rl o adial £
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Assuming that for each module, formed connectors and perhaps even buffers or transducers raust

be added such that the failure rate incrcases as the number of modules increases,

L 2K
L K+l L! 1
Mo e L (-1) L i3

where pw proportionste iucrease in single module failure rate as a consequence of redundancy
application.

For p= ¢ and p= .1
M is plotted in Figure (3.4) As a function of (AM).

END
MOLULE MODULE MODULE
# # ¥
1 2 L

> ™ s W W™ W W

Figure 3.3 Division of Equipment A inte Any Number oi Modules
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) L = # of Modules the equipment is partitioned into
A = Failure rate/Module .
| Reliability improvement As A Consequence of Partitioning
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APPENDIX A
From {2.2) we have:
M=[T1-a-e™"]" d (Al)
[+]

Let: .

Pw e-)‘t
Then (A1) is transformed into:

1 N9 L
1 L-an] .,
A0 P

Reualling the special case of the binomial series:

U= (-p
— ] e (A2)

and equating (l-p)" = X, (A2) is transformed into:

1 L

k
171 ek aeap
X p k-0
(A3)
1 , L 1 KN
=1 0 1dprt oxy DY s R g
A 0 P k=1° 0 P
Now integrating by parts yields:
I
1 KN kN 1.
g g Ly %f I %-dp
0 P g~ 0
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(A3) can therefore be expressed as:

il @

kN
y -n¥t 2

1
k

(.

L
M)
k=1

~[<

M

which implies (2.3)
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APPENDIX B

Taking Lapie<e transforms of equations (3.18) to (3.20) and defining initial conditions yields:

1= (2x+8) py(s) - wp, (3)

O= -~ (s+A+p) pl(s) + ZApz(s) + 2up0(s)

0= Apl(s) - {842p) po( )

the above simultaneous equations can be easily solved for P(s)

222

2ol®) < [s+2(ut)]

which implies

32 2
p'o(t)-

L

o4w? i ?
Noting that

p(e)= P,(t) + Py(e)= 1 - py(L)
we have (3.25).
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